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ABSTRACT

A new stochastic gradient robust �ltering method, based
on a non-linear amplitude transformation, is proposed. The
method requires no a priori knowledge of the characteris-
tics of the input signals and it is insensitive to the signals
distribution and to the stationarity of the signals.

A simulation study, applying both synthetic and real-
world signals, shows that the proposed method has overall
better robustness performance, in terms of modeling error,
compared with state-of-the-art robust �ltering methods. A
remarkable property of the proposed method is that it can
handle double-talk in the acoustical echo-cancellation pro-
blem.

1. INTRODUCTION

Many signals encountered in practice are decidedly non-
Gaussian and the signals are only stationary up to an order
less than 2. Recently [6] has investigated audio signals, and
demonstrated the usefulness of the �-Stable distribution for
modelling of noisy audio signals.

In this work we consider robust adaptive algorithms.
The objective is to design adaptive algorithms that are in-
sensitive to the probability distribution and stationarity of
the input signals.

1.1. Stochastic Gradient Algorithms

Consider an adaptive FIR �lter with input un. The estima-
tion error, at time n, of the �lter is

en = dn �w
T
un (1)

where un is the input signal vector, w is the �lter coeÆcient
vector, and dn is the desired signal. Assume that dn and
un are jointly stable processes of order �. The objective
is to minimize the dispersion of the error, min jjdn � enjj�.
This objective turns out to be intractable, but fortunately
proportional to the pth order moment for any 0 < p < �, [7].
So, an equivalent objective is J = E fjdn � enj

pg. There
is no closed-form solution for the set of coeÆcients that
minimize this objective; however the objective is convex for
1 � p � �, and so we may use a stochastic gradient method
to solve for the coeÆcients. The class of stochastic gradient
algorithms under consideration has the update

wn+1 = wn � �h(enun) (2)

where h(�) is an estimate of the gradient Ê f@J=@wg, based
on the estimation error and the input.

1.2. Adaptive Filters Based on FLOM

A number of di�erent robust stochastic gradient algorithms,
based on a fractional lower order moments (FLOM), has
been proposed [1][2][3][5]. One of these is the Symmetric
Least Mean P-norm (SLMP), that uses the symmetric norm

h(eu) = (eu)hp=2i

as estimate of the gradient, [3]. Another subclass of nor-
malized stochastic gradient algorithms, that has the form
of Eq. 2, is proposed in [5]. The proposed �lter update uses

[hq(un)]i =
jui;nj

q�1sign(ui;n)PL
m=1 jui;nj

q
for 1 � q <1 (3)

where [hq(u)]i denotes the ith element of the vector valued
function hq(u). This update, for � = 1 and for a valid q,
corresponds to minimizing kwn+1 �wnkp subject to dn �
wT
n+1un = 0. The relation between the norm, q, of the

input signal vector, u, and the q-norm, of the coeÆcient
vector update, kwn+1 �wnkp, is 1=p+ 1=q = 1, [5]. Thus,
the update in Eq. 3 provides the minimum p-norm of the
coeÆcient vector update. For q = 2 the algorithm is the
classical NLMS algorithm.

Recently [1] proposed a generalization to the NLMP
with the update

wn+1 = wn � �
e
hai
n

kunk
qa
qa + �

u
h(q�1)ai
n (4)

where, in the presence of an �-stable process, 0 < a � ��1
and 1 � q. For any real number v and p � 0, the conven-
tion vhpi = jvjpsign(v) is used. The update is motivated by
observing that it corresponds to a gradient descent adap-
tation approach to the objective function J = E

�
jenj

a+1
	
.

The update in Eq. 4 reduces to the NLMP update if a and
q are chosen as p� 1 and p=a. The update in equation 3 is
a special case of Eq. 4 for a = 1 and � = 0

1.3. Median Orthogonality

If the median of the product,M(u1u2), of two random vari-
ables u1 and u2, is zero, then u1 and u2 are said to be me-
dian orthogonal, u1 ?MO u2. For random variables with
symmetric probability densities, independence is necessary
and suÆcient for MO, however MO is necessary but not
suÆcient for independence. The MO �lter criterion, pro-
posed in [2], is that the error should be MO to all elements
of the input vector e ?MO u. This criterion extends the
conventional orthogonality criterion without restricting the
distribution of e and u.



2. A NEW ROBUST FILTERING METHOD

In this section we propose a conceptual di�erent approach
to robust adaptive algorithms, that are based on a non-
linear amplitude transformation. The idea of the amplitude
transformation is to ensure the existence of the second order
moment.

2.1. Density Transformation

The purpose of the non-linear amplitude transformation, is
to transform the probability density of a signal. The pro-
posed transformation, from an arbitrary unknown density
to a desired density, is provided by a three-step procedure

i Use the empirical density transformation, to obtain
an uniform density.

ii Transform with the inverse function to the inde�nite
integral of the desired density.

iii Scale the transformed variable.

v x y z
i ii iii

The scaling is necessary since all scale information is lost in
the empirical density transformation. The objective of the
scaling is to obtain kvkp = kzkp, for a suÆcient low p.

2.2. Empirical Transformation to Uniform Density

Let ~v be a random variable, and let v1; v2; : : : ; vN be N
observations of the variable. An empirical transformation
from the unknown arbitrary probability density random
variable, ~v, to the variable ~x with uniform density, can be
done by sorting the observations. Sort the N observations,
by the index m, such that v�;1 � v�;2 � � � � � vn;m � � � � �
v�;N . The variable ~x is forced to follow the uniform density

p(x) =

�
1
2
r if jx� aj � r

0 if jx� aj > r

by assigning xn the value

xn = (2m�Nr)=N + a

where m is the index that corresponds to the nth observa-
tion of v.

The transformation is non-parametric and can be in-
terpreted as the inverse cumulated histogram. The trans-
formation, independent of the observations, result in an
variable with uniform density. For variables with median
equal to zero the transformation is sign conserving, and for
symmetric densities the transformation is an odd function.
Dependencies between variables are conserved.

2.3. Deterministic Density Transformation

The probability density of a random variable ~x is denoted
p(x). The relation between the probability density for the
random variable ~x and ~y, is determined by the fundamental
law of probability, p(y)dy = p(x)dx. Consider a transfor-
mation of the random variable ~x, following the probability
density p(x), to a new variable ~y, following the probability
density p(y). Suppose that ~x follow a uniform distribution,
and let g(y) be a positive function with integral equal 1.

The desired transformation, that transform a uniform dis-
tributed variable ~x into a variable ~y, that follows the density
g(y), is y = G�1(x), where G�1(x) is the inverse function
to the inde�nite integral of g(y). The transformation from
a uniform distributed variable ~x into a variable ~y that fol-
low the probability density p(y) = g(y), is depicted in Fig.
1. Thus, transformation between an arbitrary continuous
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Figure 1: Density transformation from an uniform probability
density, p(x), to a probability density, p(y), by the function g(x).

probability density to or from an uniform probability den-
sity, is given by the probability distribution function or the
inverse probability distribution function respectively.

2.4. Stochastic Gradient Adaptive Filter Based on

non-linear Transformation

The idea of the non-linear amplitude transformation, is to
make a density transformation, that ensures the existence
of the second order moment. We propose to use a trans-
formation, g(�), that transform an arbitrary density into a
Normal distribution. If the estimation error, en, and the
input signal vector, un, is transformed into a Normal dis-
tributions by the function ge(�) and gu(�), then the objective
E
�
jg (dn � en)j

2� makes sense.
The structure of the adaptive algorithm is depicted in

Fig. 2. The proposed amplitude transformation is sign con-
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Figure 2: Adaptive �lter based on a non-linear transformation
of the estimation error.

serving, and that ensures that gu (u) ge (e) is an ascending
direction for the objective function. A straightforward up-
date equation, on the form of Eq. 2, is

wn+1 = wn � �gu (un) ge(en) (5)

The median orthogonality (MO) criterion proposed in [2]
apply to this update. The algorithm will have a stability
point where e?MOu because the integral of the even density
function and the odd g(�) is zero.



3. SIMULATIONS

The setup used for evaluation is depicted in Fig. 2, where
h is an 10th order low pass �lter. The proposed algorithm
is compared to 3 other algorithms, that represents state of
the art in robust adaptive algorithms:

NSLMP wn+1 = wn � �
1

kukpp + a
(eu)hp=2i

NLMP wn+1 = wn � �
1

kukpp + a
ehp�1iu

Ayd�ins method wn+1 = wn � �
uh(q�1)ai

kukqaqa + �
ehai

The performance of the algorithms are evaluated as the
modeling error 10 � log10

�
(w � h)T (w� h)=(hTh)

�
.

3.1. Simulation with synthetic signals

The synthetic signals are modeled as sequences of indepen-
dent symmetric �-stable distributed random variables. The
characteristic function for the random variable is given by
�(t) = exp(�
jtj�). The simulation of the signals are based
on the method proposed in [4],[7].

The adaptation constants used in the simulation study,
are listed in Table 1. Obviously these constants have con-
siderably in
uence on the characteristics of the algorithms.
The constants are chosen such that all the algorithms are
robust and stable in the wide range of signals under con-
sideration in this simulation study. Note that, in the ad-

Algorithm Adaptation constants

Ayd�ins method � = :01, p = q = 1:1, a = �v � 1:1
NSLMP � = :01, p = :9�v , a = 10�6

NLMP � = :01, p = :9�v , a = 10�6

Proposed method � = :05, N = 120

Table 1: Adaptation constants used in the system identi�cation
simulation study with �-stable signals

vantage of the algorithms used for comparison, the norms
used in these algorithms are adjusted in accordance with
the applied signals.

Consider the case where the input signal, u, and the in-
terference signal, v, are identical white Cauchy distributed
signals. The convergence of the modeling error is depicted
in Fig. 3. All the methods converge to about the same
misadjustment level, but the proposed method has the low-
est misadjustment. Ayd�ins method has slower convergence
than the other algorithms.

For the case where the source signal, u, is a white Gaus-
sian signal, and the interfering signal, v, is white following
a Cauchy distribution, the convergence of the modeling er-
ror is depicted in Fig. 4. Two important changes are ob-
served: the misadjustment level is about 20 dB higher and
the convergence speed is slower. The 
-ratio is not a suit-
able measure between variables of di�erent distributions, so
even though the 
-ratio between the signals is still equal to
one, the empirical SNR is very poor.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−40

−35

−30

−25

−20

−15

−10

−5

0

number of iteration

M
od

el
lin

g 
er

ro
r 

[d
B

]

Aydins method  
NSLMP          
NLMP           
Proposed method

Figure 3: Modeling error convergence for �u = �v = 1 and

u = 
v = 1. Mean over 10 Monte Carlo runs.
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Figure 4: Modeling error convergence for �u = 2, �v = 1 and

u = 
v = 1. Mean over 10 Monte Carlo runs.

In Fig. 5 the modeling error versus signal to interfer-
ence dispersion ratio is depicted. The dispersion of the
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u=
v

Figure 5: Modeling error versus signal to interference dispersion
ratio, 
v


u
. Characteristic exponent �u = �v = 1.

source signal is varied in the interval 
u = [0:1; 100], and
for the interfering signal the dispersion is constant, 
v =
1. For low dispersion ratios the performance of the algo-
rithms are much the same; for increasing dispersion ratio
the algorithms has increasing performance, and the pro-
posed method takes increasing advantages compared to the
other algorithms.

In Fig. 6 the modeling error versus the characteristic
exponent is depicted. The methods used for comparison
are almost independent of �, since in this simulation study
the norm is adjusted in accordance with the applied signal.
Even though the proposed method does not require any
knowledge of the input signals distribution it outperforms
all the algorithms used for comparison. This is a remarkably
robustness characteristic.
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Figure 6: Modeling error versus the characteristic exponent, �.
The dispersion is 
u = 1 and 
v = 0:1. Mean over 10 Monte
Carlo runs.

3.2. Simulation with speech signals

Consider the adaptive algorithms used for acoustical echo
canceling. The setup is as depicted in Fig. 2 where v is the
local speaker and u is the remote speaker. The acoustical
path, modeled by the �lter h, is the same 10th order �lter as
in the previous simulation study. The adaptation constants
used in this example are listed in Table 2. For the NSLMP,
NLMP and Ayd�ins method the p-norm and � are set to rel-
ative small values to obtain stability. The signals are speech

Algorithm Adaptation constants

Ayd�ins method � = :01, p = q = 1:1, a = :1
NSLMP � = :01, p = 1:44, a = 10�6

NLMP � = :01, p = 1:44, a = 10�6

Proposed method � = :1 , N = 1000

Table 2: Adaptation constants used in the acoustical echo can-
cellation for speech signals

signals sampled at 8kHz. The input signals and the mod-
eling error result of the simulation is shown in Fig. 7. The
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Figure 7: Modeling error, in acoustical echo-canceler in cross-
talk environment, for the 4 methods.

simulation example contains several diÆculties: the signals
are non-stationary and contains temporal correlation, the
amplitude density is non-Gaussian, and the dispersion ratio

between the signals are strongly varying. It appears, from
Fig. 7, that the proposed method has slower convergence
but apart from that, considerably better performance com-
pared with the other methods. In the intervals where the
local speaker is active, which corresponds to a poor SNR,
the algorithms, except for the proposed method, loss the
tracking of the �lter. For these methods a control strategy
is necessary. Contrary to the methods used for comparison,
the proposed method has the ability to handle double-talk
situations and environments with high background noise
levels.

4. CONCLUSION

A new robust adaptive �ltering method, based on a non-
linear amplitude transformation, is proposed. The method
is compared with state-of-the-art robust �ltering methods
and a simulation study with synthetic and real-world signals
is carried out.

The proposed method requires no a priori knowledge of
the input signals, it is insensitive to the signals density and
to the stationarity of the signals.

The proposed method has an overall better robustness
performance, compared with state-of-the-art methods. The
method is computational more expensive than the algo-
rithms used for comparison, but these methods require ei-
ther the use of a low p-norm or the estimation of a valid p,
in order to ensure stability.

A remarkable byproduct is that the proposed amplitude
transformation method can be used in a variety of situations
for signal conditioning.
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