COURSE 02457

Non-Linear Signal Processing: Exercise 2

This exercise is based on C.M. Bishop: Neural Networks for Pattern Recognition, chap-
ters 2 and section 8.6. The objective of the exercise is to become familiar with the 2D
normal distribution, the notion of covariance, and the projection on eigenvectors as fea-
tures.

Print and comment on the figures produced by the software main2a.m to main2e.m
as outlined below at the four Checkpoints. A copy of the “journal” containing these
comments and figures is returned to the tutor for evaluation.

Multivariate normal Distribution

Let x be a d-dimensional variable, i.e. x = (x,T3,...,24)". The probability of the
variable x lying in a region, A, which is a subspace of R? is given by

Pxe A) = /Ap(x)dx, (1)

where p(x) is the probability density function of the variable x.
In one dimension, the normal probability density function is given by

plali o) = = exp (-2 @)

where 1 and o“ are the mean and variance respectively. In d dimensions, the general
multivariate normal probability density function is given by
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where p is a d-dimensional vector, and X is a d X d covariance matrix.

2D normal Distribution

Let x be a 2-dimensional variable, so that d = 2 in the above equations. Let D be a set
of N samples from x, so that D = {x;,Xa,...,Xn}, where x; = (z;1,7;2)7,i=1,...,N.
It is then possible to construct a 2D histogram of the data-set, D, by defining a
Cartesian grid of small areas, where A; ,and j =1,...,M;, k =1,..., M,. The histogram

is then given by
Hjg= Y 1, j=1.... M, k=1,... M (4)

X €A; &
and the normalized histogram is given by
H.

g.,k - ik (5)
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If the union of all the areas A; includes all the samples in D, equation (5) simplifies to

- H:
Hyj = =35 (6)

The normalized histogram can be compared with the histogram approximation to the
probability density function

Pj,k:/ p(X)dX, jzl,...,Ml,kzl,...,Mg. (7)

Aj,k
Checkpoint 2.1:

Use the program main2a.m to illustrate a 2-dimensional normal probability density func-
tion given by a mean, p, and covariance matrix, 3. Create a normalized 2D histogram
and compare it with the probability density function.

Discuss the dependence of the histogram on the number of samples, N. Compare this
with the results from exercise 1 for a 1D normal distribution and relate this to the curse
of dimensionality.

Interpretation of Covariance

A one-dimensional normal distribution is given by its mean, u, and its variance, o2. The
variance describes the variation of the variable around its mean.

In two dimensions, each sample consists of two components. Each component has a
mean and a variance just as in the onedimensional case. Imagine a sample, x = (2, 25)7
from a 2D normal distribution with mean g = (juy, j12). If the variance of x;, namely o7
is large, an individual sample of z; may well be quite different from p;, and similarly for
x9. However, there may be a trend that whenever z; is larger than p,, x5 is also larger
than ps, and that whenever x; is smaller than puq, x5 is also smaller than u,. In such a
case, 1 and x5 are not independent, and they are said to be correlated.

Another term is therefore needed to fully describe the variance of the variable, x,
namely the covariance between its components, Cov(xy, z2) = E[(x1 — p1)(z2 — p2)]. The
covariance matrix of x is then given by
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The terms o015 and o9 are equal since they describe the covariance between the same
components. The covariance matrix is therefore always symmetric. The magnitude of
the covariance term for a given correlation between the two components also depends on
the diagonal variance terms. A useful quantity describing the correlation between the
components is the correlation coefficient, p. It is the normalized covariance and is given
by

_ Cov(zy,m2) 012 (9)
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where p € [—1,1]. However, the limiting case p = +1 corresponds to a perfect linear
relationship between x; and z,. In this case the variable, x, is not really 2-dimensional
since one component completely defines the other.




Checkpoint 2.2:

Use the program main2b.m to visualize the probability density functions of 2D normal
distributions with different covariance matrices. For example, try to fix the variances,
0? and o2, while only changing the covariance. Think of an example where there is no
correlation between the components and implement this distribution. Comment on the
dependence of the orientation and shape of the ellipsoids in the contour plots of quadratic

form induced by the covariance matrix.

Coordinate Transformation

For some non-linear signal detection algorithms it is desired that the input should have
zero mean, unit variance and zero covariance. The advantage of this is that it is possible
to use the same algorithm (and not changing the control parameters of it) for variables
of very different origins and covariation.

Geometrically, such a normalization corresponds to a coordinate transformation to
the system defined by the eigenvectors of the covariance matrix. Typically, the mean
and covariance matrix are not known, and must therefore be estimated from the data-set,
D= {x1,X2,...,Xn}:

I

X = N;XZ (10)
-~ 1 al ~ ~\T

Y = ﬁXz(xZ —X)(x; — X)" . (11)

The eigenvalue equation for the covariance matrix is
Su;=MNu;, j=1,....d, (12)

where ); is the j’th eigenvalue and u; is the corresponding eigenvector of 3. The trans-
formed input variables are then given by

%, = A Y2UT (%, — %), (13)
where

U = (u,...,uy) (14)

A = diag(Ai,..., Aa). (15)
It can be shown that the transformed data-set, D = {X;,%s,..., Xy} has zero mean and

a covariance matrix given by the unit matrix.

Checkpoint 2.3:

Use the program main2c.m to calculate the eigenvalues and eigenvectors of the covariance
matrix for different distributions. Comment on the geometrical significance of the eigen-
values and eigenvectors. Compare the transformed data-sets from different distributions.
What happens if the term A~'/? is removed from equation (13)?
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Projection on Eigenvectors

In some cases, the measured data is of a lower “true” dimension than the apparent di-
mension of the data vector. For example, imagine a data-set of a 3-dimensional variable.
If all the data are on a straight line, the true dimension of the data is only 1D. If the
data-set is transformed to a coordinate system, where the variation of the data is along
one of the axes, the two other components can be ignored.

Let Aq,...,Aq be the ordered set of eigenvalues of the covariance matrix, such that
AL > A > ... > Ag. If there exists a number m, such that \; > A;, 1 = 1,...,m, and
j=m++1,...,d, then the data-set can be transformed to a coordinate system, where most

of the signal variance is in an m-dimensional linear subspace spanned by the m’th first
eigenvectors in the ordered list. This transformation is again given by the eigenvectors of
the covariance matrix (U),

%, = U (x; — X). (16)

If we extract only the first m components of the transformed datavector x we obtain
a signal that carries most of the variation of the original signal. Such reduction of the
effective dimensionality of the problem is also known as extraction of features.

Checkpoint 2.4:

Use the programs main2d.m and main2e.m to transform 2D datasets into the eigenvector-
space and comment on the “true” dimensionality of the classification problems.
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