
COURSE 02457

Signal Processing in Non-linear Systems:

Lecture 8

• Neural networks, weight decay, pruning

• Probabilities and densities, Bayes’ theorem

• The normal distribution

• Gaussian mixtures

• Maximum likelihood learning

• Expectation maximization algorithm

• Exercise 8
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The probability density function p(x)

• In one dimension, the probability density function p(x)
is characterized by

P (x ∈ [a, b]) =

∫ b

a

p(x)dx

and expectations are computed by

E(f (x)) =

∫

Domain of x

f (x)p(x)dx

the density function is normalized

P (x ∈ Domain of x) =

∫

Domain of x

p(x)dx = 1

The ‘average value of x’ (the mean of x)

E(x) ≡ µ =

∫

Domain of x

xp(x)dx

The spread of x around it’s mean (the standard deviation)

σ =

√∫

Domain of x

(x− µ)2p(x)dx
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The probability density function p(x1, x2)

• In two dimensions we need to worry about the density
functions of the variables x1, x2. If the joint density
p(x1, x2) = p(x1)p(x2), the two variables are indepen-
dent. This means that expectations factorize, e.g.

E(x1x2) = E(x1)E(x2) ≡ µ1µ2

• If the two variables are not independent we can, e.g.,
investigate the covariance between them,

E((x1 − µ1)(x2 − µ2)) = E(x1x2)− µ1µ2.

• If we divide the covariance by the standard deviations we
get the correlation coefficient

ρ =
E((x1 − µ1)(x2 − µ2))

σ1σ2

The correlation coefficient is limited as −1 < ρ < +1
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The probability density function p(x)

• In the multivariate case the probability density function
p(x) is characterized by

P (xj ∈ [aj, bj]|j = 1, .., d) =

∫ b1

a1

...

∫ bd

ad

p(x)dx

and expectations are computed by

E(f (x)) =

∫

Domain of x

f (x)p(x)dx

the density function is normalized E(1) = 1.

The ‘average value of x’ (the mean of x)

E(x) ≡ µ =

∫

Domain of x

xp(x)dx

The spread of x around it’s mean (the standard devia-
tion) needs to be characterized by a matrix!

Σ =

∫

Domain of x

(x− µ)(x− µ)>p(x)dx
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Bayes’ theorem – multivariate version

P (Ck,x) = p(x|Ck)P (Ck)

P (Ck,x) = P (Ck|x)p(x)

P (Ck|x) =
p(x|Ck)P (Ck)

p(x)

p(x|Ck) =
P (Ck|X l)p(x)

P (Ck)

c∑

k=1

P (Ck|x) = 1

c∑

k=1

p(x|Ck)P (Ck) = p(x)
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The uni-variate normal distribution

• In one dimension, the normal distribution’s probability
density function is given by

p(x|µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)

where the mean value parameter is

µ =

∫ ∞

−∞
x

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
dx

and the variance,

σ2 =

∫ ∞

−∞
(x− µ)2

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
dx
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Multivariate normal distribution

• In d dimensions, the multivariate normal probability den-
sity function is given by

p(x|µ,Σ) =
1√

(2π)d|Σ| exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

where µ is a d-dimensional vector, and Σ is a d × d
covariance matrix.

• The covariance matrix has a set of eigenvectors

Σuj = λjuj, j = 1, ..., d

or in matrix notation

ΣU = ΛU

If we define a vector z = U>x, then

E(zz>) = U>xx>U = U>UΛUU> = Λ

The covariances are zero!, hence, the z vector has un-
correlated components.
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Density estimation

• We want to model the density of a stochastic signal
source

p(x) ∼ p(x|w)

• where the family p(x|w) is a given parametric density.

• A density model can e.g. be used for outlier detection:
How likely is a data point?
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Maximum likelihood learning

• The training set is D = (χ), with χ = {x1,x2,x3, ...,xN}
• the likelihood function is given by

p(χ|w) =

N∏
n=1

p(xn|w)

• The costfunction is then

E(w) = − log

(
N∏

n=1

p(xn|w)

)

E(w) =

N∑
n=1

− log p(xn|w)
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Gaussian mixtures

• The gaussian mixture model is defined

p(x|w) =

M∑
j=1

P (j)p(x|j,wj)

• Where each component density is a normal distribution
with parameters: wj = {µj,Σj}

• Think of the stochastic process as a two-step process:
first draw a component number j with relative probabil-
ities P (j), then draw a random vector from the given
component. This is the way to simulate data from the
this source.

10



Maximum likelihood learning for GM

• The costfunction is

E(w) =

N∑
n=1

− log p(xn|w)

=

N∑
n=1

− log

M∑
j=1

p(xn|j)P (j)

• We will simplify the family to isotropic Gaussians, al ex-
pressions generalize easily to full covariance matrices,

p(x|µj, σ
2
j ) =

1

(2πσ2
j )

d/2
exp

(
−(x− µj)

2

2σ2
j

)

• The derivative w.r.t. the mean value vector is

∂E

∂µj

= −
N∑

n=1

∂/∂µj

∑M
j′=1 p(xn|j′)P (j′)

p(xn|w)

=

N∑
n=1

P (j|xn)
(xn − µj)

σ2
j
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Maximum likelihood learning for GM

• The derivative w.r.t. the mean value vector is

∂E

∂µj

=

N∑
n=1

P (j|xn)
(xn − µj)

σ2
j

• the derivative w.r.t. the widths is given by

∂E

∂σj
=

N∑
n=1

P (j|xn)

[
d

σj
− (µj − xn)

2

σ3
j

]

• We can understand these rules, let us try to solve them
by equating the derivative to zero

µ̂j =

∑N
n=1 P (j|xn)xn∑N

n=1 P (j|xn)

and

σ̂2
j =

1

d

∑N
n=1 P (j|xn)(xn − µj)

2

∑N
n=1 P (j|xn)
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Maximum likelihood learning for GM

• Next we want to estimate P (j). Note that the prior
probabilities sum to unity:

M∑
j=1

P (j) = 1

• Use the softmax trick

P (j) =
exp(γj)∑M

j′=1 exp(γj′)

• The derivative of the cost function is

∂E

∂γj
=

M∑

k=1

∂E

∂P (k)

∂P (k)

∂γj
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Maximum likelihood learning for GM

• The derivative of the cost function is

∂E

∂γj
=

M∑

k=1

∂E

∂P (k)

∂P (k)

∂γj

∂E

∂P (k)
= −

N∑
n=1

1

p(xn)
p(xn|k) = −

N∑
n=1

P (k|xn)

P (k)

∂P (k)

∂γj
= δk,jP (k)− P (k)P (j)

• hence,

∂E

∂γj
= −

N∑
n=1

[P (j|xn)− P (j)] = 0

• the solution is

P̂ (j) =
1

N

N∑
n=1

P (j|xn)
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The EM algorithm

• The Expectation-maximization algorithm is a general scheme
for maximum likelihood estimation. Note that the change
in costfunction that occurs when we iterate the estimates

Enew − Eold = −
N∑

n=1

log
pnew(xn)

pold(xn)

= −
N∑

n=1

log

∑M
j=1 pnew(xn|j)P new(j)

pold(xn)

P old(j|xn)

P old(j|xn)

≤ −
N∑

n=1

∑
j

P old(j|xn) log
pnew(xn|j)P new(j)

pold(xn)P old(j|xn)

• The inequality is based on Jensen inequality:

log


∑

j

λjxj


 ≥

∑
j

λj log(xj)

• This is an upper bound so that it can be minimized and
this give us similar results as for the maximum likelihood,
now in iterative form.
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The EM algorithm cont’d

• This is an upper bound so that it can be minimized. This
gives us similar results as for the maximum likelihood,
now in iterative form: The M-step

µ̂new
j =

∑N
n=1 P old(j|xn)xn∑N

n=1 P old(j|xn)

and

̂(σnew
j )2 =

1

d

∑N
n=1 P old(j|xn)(xn − µnew

j )2
∑N

n=1 P old(j|xn)

P new
j =

1

N

N∑
n=1

P old(j|xn)

• The E-step is to re-calculate using Bayes theorem

P old(j|xn) =
P new

j pnew(xn|j)

pnew(xn)
=

P new
j pnew(xn|j)∑

j P new
j pnew(xn|j)
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The K-means algorithm

• The K-means algorithm is a simple clustering algorithm
aimed at minimizing the cost function for K clusters,

E =

K∑
j=1

∑

n∈Sj

(xn − µj)
2

• ...where µj is the mean of the data points associated
most with the j′th component Sj (i.e. closest to)

µj =

∑
n∈Sj

xn∑
n∈Sj

1

• Initialization is rather important, e.g., a cluster compo-
nent which is never assigned any points will not be up-
dated
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The K-means algorithm cont’

• If we calculate the variance associated with the j′th clus-
ter

σ2
j =

1

d

∑
n∈Sj

(xn − µj)
2

∑
n∈Sj

1

• and let the assignments be

P (j) = 1/K ...or even

P (j) =
∑

n∈Sj
1/N

we can actually use the parameters to define a density
estimate as for the Gaussian mixture.
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