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Signal Processing in Non-linear Systems:

Lecture 4

• The linear model revisited

• Properties of linear discriminants

• The generalization error

• Approximation and regressions

• The bias-variance trade-off

• Test sets

• The learning curve

• Weight decay
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Discriminant functions

• A signal detection system divides signal/measurement
space in regions R. A set of discriminant functions
yj(x) are defined so that

yj(x) > yk(x) j 6= k,x ∈ Rj

• Bayes decision theory:

yk(x) = P (Ck|x)

• Special case for binary decisions: A single function de-
fines the decision boundary:

y(x) = y1(x)− y2(x) = 0
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The linear model

• Linear discriminant function for two classes

y(x) = wTx + w0

• Terminology: w are called the weights, and wk0 is called
the threshold.

• Simplify by dummy input

y(x) = wTx + w0 = w̃T x̃

• w̃T = (w0,w) and x̃ = (1,x)
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The linear discriminant

• Linear discriminant functions for multiple classes

yk(x) = wT
k x + wk0

• Deciding between two classes j, k

yk(x)− yj(x) = (wk −wj)
Tx + (wk0 − wj0)

• Decision boundary between two classes j, k

(wk −wj)
Tx + (wk0 − wj0) = 0
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Decision regions

• Decision regions of the multiclass linear discriminant are
convex (and simply connected)

x̂ = αxA + (1− α)xB

• Let xA,xB ∈ Rk, hence yk(x
A) > yj(x

A) and yk(x
B) >

yj(x
B).

yk(x̂) = wT
k (αxA + (1− α)xB)

= αyk(x
A) + (1− α)yk(x

B)

> αyj(x
A) + (1− α)yj(x

B)

= αwT
j xA + (1− α)wT

j xB

= wT
j (αxA + (1− α)xB)

= yj(x̂)

• Thus all points along the line between xA and xB are
contained in the decision region Rk (convex and simply
connected).
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Logistic regression

• Let the class-conditional probability densities for a two-
class problem be given by

p(x|Ck) =
1√

(2π)d|Σ| exp

(
−1

2
(x− µk)

TΣ−1(x− µk)

)

• where the classes have identical
covariance matrices Σ1 = Σ2 = Σ

• In this case the posterior probabilities are

p(C1|x) =
p(x|C1)P (C1)

p(x|C1)P (C1) + p(x|C2)P (C2)

p(C2|x) =
p(x|C2)P (C2)

p(x|C1)P (C1) + p(x|C2)P (C2)

p(C1|x) =
1

1 + p(x|C2)P (C2)/p(x|C1)P (C1)

=
1

1 + exp (−a(x))
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Logistic regression cont’d

• The logistic regression Bayes decisions are based on

p(C1|x) =
1

1 + exp (−a(x))

• p(C1|x) > 0.5 when the linear discriminant
function given by

a(x) =
1

2
(x− µ2)

TΣ−1(x− µ2)

− 1

2
(x− µ1)

TΣ−1(x− µ1) + log
P (C2)

P (C1)

= (µ1 − µ2)
TΣ−1x− 1

2
µT

1 Σ
−1µ1 +

1

2
µT

2 Σ
−1µ2

+ log
P (C2)

P (C1)

... is positive
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Logistic regression cont’d

• Hence, we have a recipy for designing a two class detec-
tor:
Estimate the two class mean vectors and the common
covariance matrix

µ1 =
1

N1

N1∑
n=1

xn

µ2 =
1

N2

N2∑
n=1

xn

Σ =
1

N1 + N2

(
N1∑
n=1

(xn − µ1)(x
n − µ1)

T

+

N2∑
n=1

(xn − µ2)(x
n − µ2)

T

)

P (C1) =
N1

N1 + N2

P (C2) =
N2

N1 + N2
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The learning problem

• Supervised learning: Learning relations between sets of
variables e.g. between input and output variables, condi-
tional distributions p(output|input).

• Unsupervised learning: Learning the distribution of a set
of variables p(input).

The Bayesian paradigm

• The output density of the measured signals (t,x) is mod-
eled by a parameterized density: p(t|x) ∼ p(t|x,w).

• Let χ = {(t1,x1), (t2,x2), ..., (tN ,xN)} be a training
set

• Objective: Find the distribution of the parameter vector,
p(w|χ), hence the parameters are considered stochastic.
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The likelihood function

• Let χ = {(t1,x1), (t2,x2), ..., (tN ,xN)} be the training
set

• We use Bayes theorem

p(w|χ) =
p(χ|w)p(w)

p(χ)

• The function p(χ|w) is called the likelihood function
(more correct the likelihood of the parameter vector θ).
The density p(w) is called the a priori or prior param-
eter distribution.

• If the prior is “flat” in the neighborhood of the peak of
p(χ|w), we have

p(w|χ) ∝ p(χ|w)

• ...and finding the most probable parameters is equivalent
to finding the maximum likelihood parameters.
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Maximum likelihood & optimization

• For independent examples, χ = {(t1,x1), (t2,x2), ..., (tN ,xN)},
the likelihood function factorizes

p(χ|w) =

N∏
n=1

p(tn|xn,w)p(xn) = p(χt|χx,w) ∗ p(χx)

• Many algorithms are based on minimizing an index or
cost function

E(w) = − log p(χt|χx,w) =

N∑
n=1

− log p(tn|xnw)
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Least squares as maximum likelihood

• We seek a conditional density model of the form

y = fθ(x) + ν

p(y|x, σ2,w) =
1√

2πσ2
exp

(
− 1

2σ2
(y − fw(x))2

)

p(χt|χx, σ
2, θ) =

(
1√

2πσ2

)N

exp

(
− 1

2σ2

N∑
n=1

(tn − fw(xn)2

)

E(w, σ2) =
N

2
log 2πσ2 +

1

2σ2

N∑
n=1

(tn − fw(xn))
2

• Hence, maximizing the likelihood for Gaussian noise leads
to a least squares problem (for w).

• Note, the noise variance is always given trivially by

σ̂2 =
1

N

N∑
n=1

(tn − fŵ(xn))
2
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The generalization error: “The Hidden agenda”

• Let a training set of independent examples be given by
D = {(t1,x1), ..., (tN ,xN)}.

• The training error pr. example of the model p(t|x,w)
is given by

E =
1

N

N∑
n=1

− log p(tn|xn,w)

this is what we use to find good parameters w.

• However, what we really want is that the probability of
future data points is high, i.e., that the typical cost

Ek = − log p(tk|xk,w)

is low. A model that assigns high probability to all future
data point is close to the true model, hence, a good
generalizer.

• So, let us define the generalization error:

E = lim
M→∞

1

M

M∑

k=1

− log p(tk|xk,w)

=

∫ ∫
− log[p(tk|xk,w)]p(t|x)dtp(x)dx

This is the average (or expected) error on a test datum
(t,x).
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The generalization error

• Let a training set be given byD = {(t1,x1), ..., (tN ,xN)}.
• The mean square error of the model y(x;w) is given by

E =
1

2

N∑
n=1

(y(xn;w)− tn)2

• Now consider the limit of large sets, the error per example
is

E = lim
N→∞

1

2N

N∑
n=1

(y(xn;w)− tn)2

=
1

2

∫ ∫
(y(x;w)− t)2p(t,x)dtdx

• This is the average (or expected) error on a test datum
(x, t).
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The generalization error contd

• The generalization error

E =
1

2

∫ ∫
(y(x;w)− t)2p(t|x)p(x)dtdx

• can be rewritten using the definitions

< t|x > =

∫
tp(t|x)dt

< t2|x > =

∫
t2p(t|x)dt

{y − t}2 = {y− < t|x > + < t|x > −t}2

= {y− < t|x >}2 + 2{y− < t|x >}{< t|x > −t}
+ {< t|x > −t}2
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Regressions

• Then the generalization error becomes

E =
1

2

∫ ∫
(y(x;w)− t)2p(t|x)p(x)dtdx

=
1

2

∫ ∫
{y− < t|x >}2 + 2{y− < t|x >}{< t|x > −t}

+ {< t|x > −t}2p(t|x)p(x)dtdx

• leading to the simplification

E =
1

2

∫
(y(x;w)− < t|x >)2p(x)dx

+
1

2

∫
{< t2|x > − < t|x >2}p(x)dx

• we see that the generalization error is minimal (as func-
tion of y(x;w)) if

y(x;w) =< t|x >

• The model should output the conditional mean, hence
be a “regression”
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The bias-variance trade-off

• When training a model we have only a finite training set,
hence the model can only find the best approximation
minimization the training error

E =
1

2

N∑
n=1

(y(xn;w)− tn)2

• leading to woptimal = w(D), hence the error in a partic-
ular test point

(y(x;w(D))− t)2

will depend on the particular training set.

• The expected value of this quantity is,

ED[(y(x;w(D))− t)2]
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The bias-variance trade-off cont’d

• The expectation

ED
[
(y(x;w(D))− < t|x >)2

]

can be rewritten

(y(x;w(D)) − < t|x >)2 =

{y(x)− ED[y(x)] + ED[y(x)]− < t|x >}2

= {y(x)− ED[y(x)]}2 + {ED[y(x)]− < t|x >}2

+ 2{y(x)− ED[y(x)]}{ED[y(x)]− < t|x >}
• taking expectations w.r.t. ED,

ED
[
(y(x;w(D))− < t|x >)2

]
= ED

[{y(x)− ED[y(x)]}2
]

+ {ED[y(x)]− < t|x >}2
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Test sets

• Generalization errors can not be measured, but can be
estimated using a finite test set

• The bias-variance trade-off quantities can be estimated
by drawing multiple training sets (can in fact be overlap-
ping i.e. cross-validation)
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Crossvalidation

• Generalization errors can not be measured, but can be
estimated using a finite test set

• We would like to use as many examples as possible for
training.

• Crossvalidation: Split the data set in V subsets Dv

D = UV
v=1Dv (1)

• For v = 1, ..., V train on D/Dv and estimate the test
error by

Etest =
1

V

V∑
v=1

Ev

Ev =
1

|Dv|
∑

n∈Dv

(y(xn;w)− tn)2

• Extreme (and some times optimal): V = N , aka leave-
one-out crossvalidation
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Model capacity and test errors

• The Generalization error depends on the interplay be-
tween model flexibility and training set size

• The learning curve is the relation between generalization
and training set size: Etest(N) vs. N .

• The generalization error is determined by the complexity
of the model and the amount of data N .

• The model complexity is controlled by regularization
and by parameter pruning
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Regularization by weight decay

• Weight decay is a means of soft capacity control

Ẽ(w) = E(w) +
1

2
νwTw

• Analysis of weight decay: Second order Taylor expansion
of the costfunction

E(w) ≈ E(w0) +
∑

j

∂E

∂wj
(wj − w0,j)

+
1

2

∑

j,k

∂2E

∂wj∂wk
(wj − w0,j) (wk − w0,k)

E(w) ≈ E(w0) +
∂E

∂w
(w −w0)

+
1

2
(w −w0)

T ∂2E

∂w∂wT
(w −w0)

• The matrix H = ∂2E
∂w∂wT is called the Hessian
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Weight decay

• Analysis of weight decay:

E(w) ≈ E(w0) +
∂E

∂w
(w −w0)

+
1

2
(w −w0)

T H (w −w0)

• Hence the minimum solves

∂E

∂w
+ H (w −w0) = 0

w∗ = w0 −H−1∂E

∂w
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Weight decay

• Now if there is a non-zero weight decay

∂Ẽ(w)

∂w
=

∂E

∂w
+ νw

• Hence the new minimum solves

∂E

∂w0
+ H0(w

∗ −w0) + ν(w∗ −w0) = 0

• while the old minimum solves

∂E

∂w0
+ H0(wold −w0) = 0

• this means that the new and the old minima are related
as

w∗ −w0 = (H0 + ν1)−1 H0(wold −w0)

24


