COURSE 02457

Signal Processing in Non-linear Systems:

Lecture 5

e Generalized backprop

e Example: NetTalk

e Local quadratic approximation to the cost function
e Weight decay and pruning

e Test error estimation and penalties

e Example: Sunspot predictions

e Gradient descent and line searches

e Conjugate gradients

e Newton's method

e The Hessian matrix and approximations



The general Backprop rule

e Consider a hidden unit z; = g(a;),
where a; — Zz Wi iz
e then the derivative can be expressed
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Local quadratic approximation

e Second order Taylor expansion of the costfunction
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e The matrix H = agi% is called the Hessian
e The local approximation to the gradient (VE) is given
by
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Expansion around a minimum

e At a minimum VE =0
1
E(w) ~ E(w") + - (W — w) H(w") (w — w)
e The Hessian is real and symmetric, hence a has a set of

orthonormal eigenvectors

Hllj = )\juj
T

u; u; = 0j
e At a minimum the Hessian is positive: v' Hv > (

e in particular for all eigenvectors
T — .
u; Hu; = A; >0

e hence, when the Hessian is positive all eigenvalues are
positive



The generalization error

e Let a training set be given by D = {(¢t!,x!), ..., (", x™)}.

e The mean square error of the model y(x; w) is given by

B =33yl w) — 1)
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e Now consider the limit of large sets, the error per example
IS
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E = lim —Z(y(x”w) — t")?
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e This is the average (or expected) error on a test datum
(x,t), which we call the generalization error.



Crossvalidation

e Generalization errors can not be measured, but can be
estimated using a finite test set

e We would like to use as many examples as possible for
training.

e Crossvalidation: Split the data set in V' subsets D,

D =U,_D, (1)

e For v = 1,...,V train on D/D, and estimate the test
error by
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e Extreme (and likely optimal): V' = N, aka leave-one-out
crossvalidation



Model capacity and test errors

e The Generalization error depends on the interplay be-
tween model flexibility and training set size

e The learning curve is the relation between generalization
and training set size: Fiot(N) vs. N.

e T he generalization error is determined by the complexity
of the model and the amount of data V.

e The model complexity is controlled by regularization and
by pruning



Regularization by weight decay

e Weight decay is a means of soft capacity control

~ 1
E(w)=E(w)+ §VWTW

e Analysis of weight decay: Second order Taylor expansion
of the costfunction
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e The matrix H = 0°B is called the Hessian
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Weight decay

e Analysis of weight decay:

E(w) ~ E(wg) + g—va (W — wy)
1
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e Hence the minimum solves
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Weight decay

e Now if there is a non-zero weight decay

~

OE(w) 8_E+VW
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e Hence the new minimum solves

OF )
- + Hy(w" — wy) + v(w* — wy) =0

e while the old minimum solves

e this means that the new and the old minima are related
as

w* —wy = (Hy+ 1) Hy(w — w)
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Saliency: Optimal Brain Damage

e How much does the training error increase if we delete a
weight

e Second order expansion:

E(w) ~ E(wW*) + g—va (W —w")
1

+5 (w—w*) H(w—w"

e Deletion of the j'th weight: w — w* = wje;
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Saliency: Optimal Brain Damage

e However, in the minimum the first derivative is zero,
hence

1

AE(W)Obd ~ 5 j

defining the OBD saliency

e If the retraining contribution is included (the un-pruned

weights are not optimal after pruning) we get instead the
OBS saliency
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Estimating Generalization: Penalties

e The training set error is a downward biased estimate

~ 2
Etest ~ Etrain + dO’

e If we have used regularization (by weight decay)

N 9
Eiest GPE = Eirain + deggo

’\2 - 2Etrain
0o~ —————

e Combining we find

Etest,GPE ~ Etrain
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Gradient descent optimization

e Objective: to solve the equation VE = (

AW(T) = —UVE‘W(T)
e 1) is the learning parameter
e 1) can be too small: convergence very slow
e 7) can be too large: oscillatory behavior

e Find 7 by line search along the search direction
d") = —VE|

W) = w4 (g
E(n) = Ew'™ +nd")
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Conjugate gradient method

e Objective: to solve the equation VE = (

o Let g7 = VE(w!7)), the optimal 7 solves
—EBE(w +7d™) = 0

VEW™ +pd™)Td" = 0
g(T—I—DTd(T) _ O

e Gradient at optimal point is orthogonal to the search
direction!

g<w(r+1)>"l'd(7) — 0

e Choose the search direction so that this property also
holds between new and old search direction:

g(W(T—I—l) 4+ 77d(T—l—l))Td(T) — 0
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Conjugate gradient method cont'd

e Gradient at optimal point is orthogonal to the search
direction! |f we search such orthogonal directions we
keep minimal interference.

g<W(T+1)>Td(T) —0

e Choose the search direction so that this property also
holds between new and old search direction:

g(W(T—i—l) 4+ nd(T—H))Td(T) —0
e expand to second order:
g<w(7+1) 4 nd(?’-{-l)) ~ g<w(7+1)> 4 an(T—l—l)

-
(g(W(TH)) n an(T—i—l)) 4™ — o

d(T—i-l)THd(T) — 0

e This defines the conjugate directions.
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Conjugate gradient method cont'd

e A complete set of conjugate directions can be found for
a quadratic problem:

4T+ = _yEeH) 4 gnge)

e with the three alternative definitions (g = VE)
(Hestenes-Stiefel, Polak-Ribiere, Fletcher-Reeves):

g(7+1)‘|‘(g(7+1) _ g(T))

5(7) _
d(T)T(g(TH) _ g(T))
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g(T)Tg(T)

e Furthermore, if we perform a perfect line search at ev-
ery step the algorithm will converge in W steps for the
quadratic problem. For the general costfunction noth-

ing definitive is known, but it should work close to the
minimum....
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Newtons method in 1D

e et the costfunction be approximated,

E(w) = E(w") + %H(w — w*)?

e The derivative is given by

OF or , | .
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e [ his means that the distance from w to w* is

W' =w — H‘la—E(w)

ow

e Hence the optimal step is Aw = —H_lg—g(w)
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Newtons method in multiple dimensions

e At a minimum VE =0

VE(w)~H(w—w")

e We find the optimal multivariate step is given by

w*=w—-H 'VE(w)

e this is the Newton direction, for a quadratic problem this
solves the optimization problem in one iteration!
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Hessian for a least squares problem

e The least squares costfunction
N

1 n T
LE(w) = 52@ —d")?
n=1
e [ he first derivative is
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e [ he second derivative is
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e The Gauss-Newton or outer product approximation is

e The pseudo-Gauss-Newton approximation is to ignore
the off-diagonal terms
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