COURSE 02457

Signal Processing in Non-linear Systems:

Lecture 6

e Perceptrons

e Gradient descent

e Computing gradients

e Gradient descent and line searches

e Conjugate gradients

e Local quadratic approximation to the cost function
e Newtons method

e QOuter product (Gauss) approximation

e Diagonal (pseudo-Gauss) approximation

e [est error estimation



The Perceptron

e The Perceptron is due to Rosenblatt (1958):

y(x) = tanh (w'x + wp)

e Note the similarity to the logistic regression model which
was derived as the discriminant function for discrimina-
tion between to normal distribution with identical covari-
ance matrices



The Multi-layer Perceptron

e The Multi-layer Perceptron (MLP) was considered by
Minsky and Papert in the early sixties:

y(x) = tanh Zthj(X)

j=0
zj(x) = tanh (w'x + wy)

2’0:1

e The hidden units represent the inputs so that the output
unit can solve a linear discrimination problem



Feed-forward and feed-back nets

e Feed-forward nets have no loops, hence their evaluation
is uniquely defined.

e General MLP’s can have loops, hence need an associ-
ated evaluation rule. Only relevant for dynamic models
(time series modelling). Sometimes also called recursive
models.

e For time series models: Feed-forward models have finite
memory, while recursive networks implement (arbitrary)
long memory.



The MLP learning problem

e Let a training set be given by D = {(¢t!,x!), ..., (", x™)}.

e The mean square error of the model y(x; w) is given by

1N

b= D (yx"w) — 1)

n=1

e Weight decay is a means of soft capacity control, aug-
mented cost function



Approximation capabilities

e Linear output MLP is

y(x) = Zthy’(X)

zi(x) = tanh (w'x + wp )

Z():l

e is a universal approximation tool for continuous func-
tions.

e The set of linear output MLP’s is dense in the continuous
functions on a compact subset of a vector space: If given
an € and a continuous target function f(x) on the set
(), we can find an MLP network for which

y(x;w) — f(x)] <€ Vx e



The Multi-layer Perceptron

e The Multi-layer Perceptron (MLP)

yi(x) = sz,ﬂj(X)

zi(x) = tanh (WJTX—ij,O)
20 = 1

e The hidden units represent the inputs so that the output
unit can solve a linear discrimination problem



The MLP learning problem

e Let a training set be given by D = {(¢t!,x!), ..., (", x™)}.

e The mean square error of the model y(x; w) is given by



Gradient descent optimization

e Objective: to solve the equation VE = (

AwT = —nVE|_
e 7) is the learning parameter
e 1) can be too small: convergence very slow

e 7) can be too large: oscillatory behavior



Backprop for the two layer network

e We compute the gradient w.r.t. any weight in first or second layer
U

(y(x";w) — ")’
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n=1
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n=1

e The network derivative for an output unit weight w;is given by

Oy (x"™; w) 0
“ow, ow, JZ:WJZJ(X)
ng a
= w,;z;(X)
jz; (7wj/ I
= zy(x)
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Backprop for the two layer net cont'd

e The network derivative for a hidden unit weight w; ;sis given by

Jy(x"; w) 0 A
(9wj/7k/ B aUJj/’k/jZOw‘]ZJ(X)

ng a
- Z Wj aw " Zj(x)
3=0

0
= Wy o tanh (Z wj, k%)

k=0

2
= wy (1 — tanh (Z wjkxz>> F Z W; KT},

k=0
= ’U}j/ (1 — 2]2') .TZ/
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Backprop for the two layer net cont'd

e Combining we get for the output weight

S S ) — 1))
J n=1
N
= Zc?”z](xn)
n=1
e and for the hidden weight
- = Z(y(x ) —t"w; (1 - ZJ2(X )) T
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12



The general Backprop rule

e Consider a hidden unit z; = g(a;), where a =} ; w;;2;(x")

e ... then the derivative can be expressed

OF OE" aa?/
awﬂ i aa/;'ll awjz’
da’l Qwy;
n da'! )
o Let 0] = aEn, note also 85) = z;(x"), this leads to
i

Z 5”zl

(91,0]Z

e Computing the 0's

oE" 8E“%
da; N - Oay, Oa;

07 = g'(a))  w oy
k
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Gradient descent optimization revisited

e Objective: to solve the equation VE = (

AW(T) = —UVE‘W(T)
e 1) is the learning parameter
e 1) can be too small: convergence very slow
e 7) can be too large: oscillatory behavior

e Find 7 by line search along the search direction
d") = —VE|

W) = w4 (g
E(n) = Ew'™ +nd")
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Conjugate gradient method

e Objective: to solve the equation VE = (

o Let g7 = VE(w!7)), the optimal 7 solves
—EBE(w +7d™) = 0

VEW™ +pd™)Td" = 0
g(T—I—DTd(T) _ O

e Gradient at optimal point is orthogonal to the search
direction!

g<w(r+1)>"l'd(7) — 0

e Choose the search direction so that this property also
holds between new and old search direction:

g(W(T—I—l) 4+ 77d(T—l—l))Td(T) — 0
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Conjugate gradient method cont'd

e Gradient at optimal point is orthogonal to the search
direction! |f we search such orthogonal directions we
keep minimal interference.

g<W(T+1)>Td(T) —0

e Choose the search direction so that this property also
holds between new and old search direction:

g(W(T—i—l) 4+ nd(T—H))Td(T) —0
e expand to second order:
g<w(7+1) 4 nd(?’-{-l)) ~ g<w(7+1)> 4 an(T—l—l)

-
(g(W(TH)) n an(T—i—l)) 4™ — o

d(T—i-l)THd(T) — 0

e This defines the conjugate directions.
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Conjugate gradient method cont'd

e A complete set of conjugate directions can be found for
a quadratic problem:

4T+ = _yEeH) 4 gnge)

e with the three alternative definitions (g = VE)
(Hestenes-Stiefel, Polak-Ribiere, Fletcher-Reeves):

g(7+1)‘|‘(g(7+1) _ g(T))

5(7) _
d(T)T(g(TH) _ g(T))
) g(T—I—l)T<g(T+1) o g(T))
b= g Tg)
6(7) B g(7+1)"l'g(7-)
g(T)Tg(T)

e Furthermore, if we perform a perfect line search at ev-
ery step the algorithm will converge in W steps for the
quadratic problem. For the general costfunction noth-

ing definitive is known, but it should work close to the
minimum....
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Newtons method in 1D

e et the costfunction be approximated,

E(w) = E(w") + %H(w — w*)?

e The derivative is given by

OF or , | .
OF *
a—wW):H(w—w)

e [ his means that the distance from w to w* is

W' =w — H‘la—E(w)

ow

e Hence the optimal step is Aw = —H_lg—g(w)
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Newtons method in multiple dimensions

e At a minimum VE =0

VE(w)~H(w—w")

e We find the optimal multivariate step is given by

w*=w—-H 'VE(w)

e this is the Newton direction, for a quadratic problem this
solves the optimization problem in one iteration!
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Hessian for a least squares problem

e The least squares costfunction
N

1 n T
LE(w) = 52@ —d")?
n=1
e [ he first derivative is
OF < oy"
D n dn
ow ;@ )(9w

e [ he second derivative is

PE Yooyt & 0%y"
n=1

owow’T — Ow Ow Owow T

e The Gauss-Newton or outer product approximation is

e The pseudo-Gauss-Newton approximation is to ignore
the off-diagonal terms
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