
COURSE 02457

Signal Processing in Non-linear Systems:

Lecture 11

• Review of sounds and features

• The HMM generative model vs the mixture model

• Estimating probabilities of sequences in HMM’s

• The Viterbi algorithm

• Estimating parameters in the HMM’s

• The forward-backward algorithm for calculation of up-
dates.
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Speech signals

• Speech signals are composed of sound sequences

• The sounds and the transitions between them serve as
symbolic representation of information

• Speech sounds are produced and shaped by the human
vocal tract

• The vocal tract is excited either by short burst of periodic
stimulus or white noise. Voiced sounds are produce by
airflow through tight vocal cords. Unvoiced sounds (or
fricatives) are produced by turbulence.

After L.R. Rabiner and R.W. Schaefer: Digital Processing of Speech Signals
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Linear predictive modeling

• Linear system model (IIR model)

x(n) =

p∑
j=1

wjx(n− j) + ε(n)

• System parameter are estimated from short sequences
(20-30 msec)in which the signal is quasi-stationary by the
Levinson-Durbin algorithm. The autocorrelation func-
tion is defined

R(m) = 1/N
N∑

n=m+1

x(n)x(n−m) + ε(n)

• and the least squares estimates of the parameters satisfy

R(m) =

p∑
j=1

ŵ(j)R(m− j)
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Cepstral coefficients

• The cepstrum is defined as the inverse DFT of the log
of the measured signal

C(m) = IDFT (log(|X(k))|)
X(k) = DFT (|x(m)|)

• Can be used to separate a slowly varying (in frequency
space) envelope from a rapidly varying excitation (e.g.,
a periodic component with higher harmonics).

• The observation sequence consists of cepstral coefficients
and their time derivatives.

• Observation sequences are grouped in symbols (num-
bered k = 1, ..., K) by a vector quantizer, e.g., k-means.
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The K-means algorithm

• The K-means algorithm is a simple clustering algorithm
aimed at minimizing the cost function for K clusters,

E =

K∑
j=1

∑

n∈Sj

(xn − µj)
2

• ...where µj is the mean of the data points associated
most with the j′th component Sj (i.e. closest to)

µj =

∑
n∈Sj

xn∑
n∈Sj

1

• Initialization is rather important, e.g., a cluster compo-
nent which is never assigned any points will not be up-
dated

5



Simple Markov models

• Let yn be a sequence of symbols with K states

• Let aj,j′ be the probability of going from j to j′.

• aj,j′ is a stochastic matrix
∑

j′ aj,j′ = 1

• a can be estimated by maximum likelihood.
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Math trick: Lagrange multipliers

• Constrained optimization problem:
Minimize f (u) subject to g(u) = 0 .

• The contraint defines a (hyper-) surface in (u) space.
The partial derivative in any point on this surface can be
written: ∇f = ∇||f +∇⊥f

• For a move ε inside the surface g(u+ε) = g(u)+∇g·ε =
0, hence ∇g ·ε = 0, and the derivative of g is orthogonal
to the surface.

• This means that on the surface we have : ∇⊥f ∝ ∇g.
This means that there is a λ so that ∇⊥f = −λ∗∇g

• In other words we can minimize f inside the surface
(∇||f = 0), by solving for all λ’s.

∇L(u, λ) = 0

∇f + λ∇g = 0

... and then solve for u(λ) to make sure the constraint
is fulfilled (i.e. make sure that ∇||f = 0).

• For multiple constraints∇L(u, {λj}) = f (u)+
∑

j λjgj(u)
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Simple Markov models

• a can be estimated by maximum likelihood.

P ({yt}|a) = P (y1)

N∏
t=2

P (yt|yt−1, a)

= P (y1)
∏

<j,j′>

(aj,j′)
nj,j′

• nj,j′ is the occurrence of the transition.

• The (neg) likelihood is minimized subject to the condi-
tion

∑
j′ aj,j′ = 1 leads to the solution,

âj,j′ =
nj,j′∑
j′ nj,j′
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Why Hidden Markov Models?

• Some distributions over sequences cannot be modeled
with short range Markov chains. A more flexible model
which is inherently short range is obtained by considering
hidden Markov models.

• We need a model that is a mixture of two distributions

• The simplest HMM:

– Discrete hidden states: xt ∈ {1, ..., S}.
– Discrete observations: yt ∈ {1, ..., K}.
– Probability of observation if state is known:

bk,j = P (yt = k|xt = j)
– Probability of state transition:

aj,j′ = P (xt+1 = j′|xt = j)
– Probability of starting symbols: π(i) = P (y1 = i)
– Parameters θ = {a, b, π}

• Simultaneous probability of an observed sequence and
states

P (y1:T , x1:T |θ) = P (x1|π)P (y1|x1, b)
T∏

t=2

P (yt|xt, b)P (xt|xt−1, a)

P (y1:T , x1:T |θ) = πx1by1,x1

T∏
t=2

byt,xtaxt−1,xt

9



Hidden markov models vs. mixture model

• Simulating these processes are two-step procedures: First
generate set of hidden variables, then generate observa-
tions.

• Probability of observations

p(x) =

K∑

k=1

P (k)p(x|µk,Σk)

• Probability of a sequence with known states

P (y1:T , x1:T |θ) = P (x1|π)P (y1|x1, b)
T∏

t=2

P (yt|xt, b)P (xt|xt−1, a)

• Graphical representation
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Estimating the most likely hidden state sequence

• Option: Search through all possible (KT ) hidden state
combinations?

• The Viterbi algorithm makes use of dynamic program-
ming for given observation sequence y1:T

– Define

δt(i) = max
x1,..,xt−1

P (x1, ..., xt−1, xt = i, y1, ..., yt|θ)

– Recursion

δt+1(j) =
(
max

i
δt(i)ai,j

)
byt+1,j

ψt+1(j) = arg max
i

δt(i)ai,j

is obtained by considering

P (x1:t, xt+1, y1:t+1|θ) =

P (x1:t−1, xt, y1:t|θ)P (xt+1|xt, θ)P (yt+1|xt+1, θ)

and using

max
a,b

f (a, b)g(b) = max
b

(max
a

f (a, b) · g(b))

• termination and ‘backtrack’ to find the best sequence

x∗T = arg max
i

δt(i)ai,j

x∗t = ψt+1(x
∗
t+1)
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Probability of an observation sequence

• Could we use the Viterbi algorithm to find the most likely
state sequence (x∗1:T = f (y1:T , θ)) and use probability of
the sequence with this hidden sequence?:

P (y1:T , x∗1:T |θ) = P (y1, π)

T∏
t=2

P (yt|x∗t , b)P (x∗t |x∗t−1, a)

P (y1:T , x∗1:T |θ) = πy1

T∏
t=2

byt,x
∗
t
ax∗t−1,x

∗
t

• No, the probability is given by the sum over all hidden
states

P (y1:T |θ) =
∑
x1:T

P (y1:T , x1:T |θ)

• How many operations are need for such a calculation?. If
the number of hidden states is K, there are KT possible
configurations.
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Probability of an observation sequence con’t.

• The forward summation, by definition

P (y1:t+1, xt+1|θ) =
∑
xt

P (y1:t, yt+1, xt, xt+1)

=
∑
xt

P (y1:t, xt, xt+1)P (yt+1|xt+1)

=
∑
xt

P (y1:t, xt)P (xt+1|xt)P (yt+1|xt+1)

• Hence we have a recursion again, define

αt+1(xt+1) = (
∑
xt

αt(xt)axt,xt+1)bxt+1(yt+1)

αt+1(j) =
∑

i

αt(i)ai,jbj(yt+1)

• with the termination

P (y1:T |θ) =
∑
xT

P (y1:T , xT |θ)

=
∑

j

αt(j)

• The number of operations is roughly T ∗ K2, since we
have a sum over the K symbols for each αt+1(j)
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Estimation of HMM parameters

• The log-likelihood function reads

log P (y1:T |θ) = log
∑
x1:T

P (y1:T , x1:T |θ)

= log
∑
x1:T

π(x1)
∏

j,j′
a

nj,j′(x)

j,j′
∏

k,j

b
mk,j(x,y)

k,j

where nj,j′(x) is the number of transitions j → j′, and
mk,j(x) is the number of times the symbol k is emitted
in the state j.

• Introducing Lagrange multipliers to cope with the con-
traints

∑
j′ aj,j′ = 1 and

∑
k bk,j = 1, we will minimize

L = log
∑
x1:T

π(x1)
∏

j,j′
a

nj,j′(x)

j,j′
∏

k,j

b
mk,j(x,y)

k,j

+
∑

j

λj(
∑

j′
aj,j′ − 1)

+
∑

j

κj(
∑

k

bk,j − 1)
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Estimation of HMM parameters

• Minimizing L produces the result

âj,j′ =

∑
x1:T

nj,j′(x)P (x1:T |y1:T , θ)∑
j′′

∑
x1:T

nj,j′′(x)P (x1:T |y1:T , θ))

b̂k,j =

∑
x1:T

mk,j(x)P (x1:T |y1:T , θ)∑
k′

∑
x1:T

mk,j(x)P (x1:T |y1:T , θ))

• or ...

âj,j′ =
〈nj,j′(x)|y, θ〉x∑
j′′〈nj,j′′(x)|y, θ〉x

b̂k,j =
〈mk,j(x)|y, θ〉x∑
k〈mk,j(x)|y, θ〉x
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Computing the HMM expectations

• How to calculate the expectation?

〈nj,j′|y, θ〉 =
∑
x1:T

nj,j′(x)P (x|y, θ)

=

T−1∑
t=1

P (xt = j, xt+1 = j′|y, θ)

• we can use the forward calculation (the α’s) in combi-
nation with a backward recursion, based on

P (yt:T |xt−1) =
∑
xt

P (yt:T |xt)P (xt|xt−1)

=
∑
xt

P (yt|xt)P (yt+1:T |xt)P (xt|xt−1)

• if we define βt(j) = P (yt:T |xt−1 = j), this implies

βt(j) =
∑

i

b(yt:T |i)a(i, j)βt+1(i)
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Computing the HMM expectations

• How to calculate the expectation?

〈nj,j′|y, θ〉 =
∑
x1:T

nj,j′(x)P (x|y, θ)

=

T−1∑
t=1

P (xt = j, xt+1 = j′|y, θ)

• we can use the forward calculation (the α’s) in combina-
tion with the backward recursion, βt(j) = P (yt:T |xt−1 =
j),

P (xt = j, xt+1 = j′|y, θ) =
∑

i

b(yt:T |i)a(i, j)βt+1(i)

• we note that

P (xt = j, xt+1 = j′|y, θ)

= P (xt = j, xt+1 = j′, y|θ)/P (y|θ)

= P (y|xt, xt+1)P (xt+1|xt)P (xt)/P (y|θ)

= P (y1:t|xt)P (yt+1|xt+1)P (yt+2:T |xt+1)P (xt+1|xt)
P (xt)

P (y|θ)
= αt(j)byt+1,j′βt+1(j

′)aj,j′/P (y|θ)
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