
COURSE 02457

Signal Processing in Non-linear Systems:

Lecture 9

• Density estimation

• Maximum likelihood estimation

• Gaussian mixtures

• K-means clustering

• Learning GM’s

• The EM algorithm

• Classification with mixtures

• Radial Basis Function network

• Training the RBF net

• Exercise 9
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Density estimation

• We want to model the density of a stochastic signal
source

p(x) ∼ p(x|w)

• where the family p(x|w) is a given parametric density.
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Maximum likelihood learning

• The training set is D = (χ), with χ = {x1,x2,x3, ...,xN}
• the likelihood function is given by

p(χ|w) =

N∏
n=1

p(xn|w)

• The costfunction is then

E(w) = − log

(
N∏

n=1

p(xn|w)

)

E(w) =

N∑
n=1

− log p(xn|w)
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Multivariate normal distribution

• In d dimensions, the multivariate normal probability den-
sity function is given by

p(x|µ,Σ) =
1√

(2π)d|Σ| exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

where µ is a d-dimensional vector, and Σ is a d × d
covariance matrix.

• The covariance matrix has a set of eigenvectors

Σuj = λjuj, j = 1, ..., d

or in matrix notation

ΣU = ΛU

If we define a vector z = U>x, then

E(zz>) = U>xx>U = U>UΛUU> = Λ

The covariances are zero!, hence, the z vector has un-
correlated components.
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Gaussian mixtures

• The gaussian mixture model is defined

p(x|w) =

M∑
j=1

p(x|j,wj)P (j)

• Where each component density is a normal distribution
with parameters: wj = {µj,Σj}

• Think of the stochastic process as a two-step process:
first draw a component number j with relative probabil-
ities P (j), then draw a random vector from the given
component. This is the way to simulate data from the
this source.
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The K-means algorithm

• The K-means algorithm is a simple clustering algorithm
aimed at minimizing the cost function for K clusters,

E =

K∑
j=1

∑

n∈Sj

(xn − µj)
2

• ...where µj is the mean of the data points associated
most with the j′th component Sj (i.e. closest to)

µj =

∑
n∈Sj

xn∑
n∈Sj

1

• Initialization is rather important, e.g., a cluster compo-
nent which is never assigned any points will not be up-
dated
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The K-means algorithm cont’

• If we calculate the variance associated with the j′th clus-
ter

σ2
j =

1

d

∑
n∈Sj

(xn − µj)
2

∑
n∈Sj

1

• and let the assignments be

P (j) = 1/K ...or even

P (j) =
∑

n∈Sj
1/N

we can actually use the parameters to define a density
estimate as for the Gaussian mixture.

• The K-means is equivalent to a “hard assigment” EM is
we use a common variance and P (j) = 1/K.
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Bayes’ theorem – multivariate version

P (Ck,x) = p(x|Ck)P (Ck)

P (Ck,x) = P (Ck|x)p(x)

P (Ck|x) =
p(x|Ck)P (Ck)

p(x)

p(x|Ck) =
P (Ck|X l)p(x)

P (Ck)

c∑

k=1

P (Ck|x) = 1

c∑

k=1

p(x|Ck)P (Ck) = p(x)
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Maximum likelihood learning for GM

• The costfunction is

E(w) =

N∑
n=1

− log p(xn|w)

=

N∑
n=1

− log

M∑
j=1

p(xn|j)P (j)

• We will simplify the family to isotropic Gaussians

p(x|µj, σ
2
j ) =

1

(2πσ2
j )

d/2
exp

(
−(x− µj)

2

2σ2
j

)

• The derivative w.r.t. the mean value vector is

∂E

∂µj

= −
N∑

n=1

∂/∂µj

∑M
j′=1 p(xn|j′)P (j′)

p(xn|w)

= −
N∑

n=1

P (j|xn)
(µj − xn)

σ2
j
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Maximum likelihood learning for GM

• The derivative w.r.t. the mean value vector is

∂E

∂µj

=

N∑
n=1

P (j|xn)
(µj − xn)

σ2
j

• the derivative w.r.t. the widths is given by

∂E

∂σj
=

N∑
n=1

P (j|xn)

[
d

σj
− (µj − xn)

2

σ3
j

]

• We can understand these rules, let us try to solve them
by equating the derivative to zero

µ̂j =

∑N
n=1 P (j|xn)xn∑N

n=1 P (j|xn)

and

σ̂2
j =

1

d

∑N
n=1 P (j|xn)(xn − µj)

2

∑N
n=1 P (j|xn)
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Maximum likelihood learning for GM

• Next we want to estimate P (j). Note that the prior
probabilities sum to unity:

M∑
j=1

P (j) = 1

• Use the softmax trick

P (j) =
exp(γj)∑M

j′=1 exp(γj′)

• The derivative of the cost function is

∂E

∂γj
=

M∑

k=1

∂E

∂P (k)

∂P (k)

∂γj
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Maximum likelihood learning for GM

• The derivative of the cost function is

∂E

∂γj
=

M∑

k=1

∂E

∂P (k)

∂P (k)

∂γj

∂E

∂P (k)
= −

N∑
n=1

1

p(xn)
p(xn|k) = −

N∑
n=1

P (k|xn)

P (k)

∂P (k)

∂γj
= δk,jP (k)− P (k)P (j)

• hence,

∂E

∂γj
= −

N∑
n=1

[P (j|xn)− P (j)] = 0

• the solution is

P̂ (j) =
1

N

N∑
n=1

P (j|xn)
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The EM algorithm

• The Expectation-Maximization algorithm is a general scheme
for maximum likelihood estimation. Note that the change
in costfunction that occurs when we iterate the estimates

Enew − Eold = −
N∑

n=1

log
pnew(xn)

pold(xn)

= −
N∑

n=1

log

∑M
j=1 pnew(xn|j)P new(j)

pold(xn)

P old(j|xn)

P old(j|xn)

≤ −
N∑

n=1

∑
j

P old(j|xn) log
pnew(xn|j)P new(j)

pold(xn)P old(j|xn)

• The inequality is based on Jensen’s inequality:

log


∑

j

λjxj


 ≥

∑
j

λj log(xj)

• This is an upper bound so that it can be minimized and
this give us similar results as for the maximum likelihood,
now in iterative form.
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The EM algorithm cont’d

• This is an upper bound so that it can be minimized. This
gives us similar results as for the maximum likelihood,
now in iterative form

µ̂new
j =

∑N
n=1 P old(j|xn)xn∑N

n=1 P old(j|xn)

and

̂(σnew
j )2 =

1

d

∑N
n=1 P old(j|xn)(xn − µnew

j )2
∑N

n=1 P old(j|xn)

P new
j =

1

N

N∑
n=1

P old(j|xn)
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Signal Detection: Bayes decision theory

Figure 1: Schematic plot of the densities for a measured signal drawn from either of two
populations C1, C2

P (error) = P (x ∈ R2, C1) + P (x ∈ R1, C2)

= P (x ∈ R2|C1)P (C1) + P (x ∈ R1|C2)P (C2)

=

(∫

R2

p(x|C1)dx

)
P (C1) +

(∫

R1

p(x|C2)dx

)
P (C2)

• The probability of error is minimized if we assign points
to R1, whenever p(x|C1)P (C1) > p(x|C2)P (C2)

• Using Bayes’ theorem, this is equivalent to assign points
to R1, whenever p(C1|x) > p(C2|x), since we can di-
vide by p(x) on both sides of the inequality. Hence, the
Bayes optimal signal detection system chooses the most
probable class given the measurement.
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Signal detection with mixtures

• Let’s recollect Bayes formula

P (Ck|x) =
p(x|Ck)P (Ck)

p(x)

=
p(x|Ck)P (Ck)∑
k′ p(x|Ck′)P (Ck′)

• This could be viewed as a simple network with basis func-
tions

φk(x) =
p(x|Ck)∑

k′ p(x|Ck′)P (Ck′)

• weighted by the P (Ck) for each output neuron
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Radial Basis Function network for detection

• Using a single Gaussian per class might be over-simplified.
So let us propose a Gaussian mixture for each class

p(x|Ck) =
∑

j

p(x|j)P (j|Ck)

• The marginal density

p(x) =
∑

k

∑
j

p(x|j)P (j|Ck)P (Ck)

=
∑

j

p(x|j)P (j)

• with priors defined by

P (j) =
∑

k

P (j|Ck)P (Ck)
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Radial Basis Function network for detection

• we are interested in a network that gives us the posterior
probabilities

P (Ck|x) =

∑
j p(x|j)P (j|Ck)P (Ck)∑

j′ p(x|j′)P (j′)
P (j)

P (j)

=
∑

j

wk,jφj(x)

• with the definitions

φj(x) =
p(x|j)P (j)∑
j′ p(x|j′)P (j′)

= P (j|x)

wk,j =
P (j|Ck)P (Ck)

P (j)
= P (Ck|j)

• so the basis functions are “normalized” by spatially vari-
ant functions, hence no longer Gaussians.
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The generalization error

• Let a training set be given byD = {(t1,x1), ..., (tN ,xN)}.
• The mean square error of the model y(x;w) is given by

E =
1

2

N∑
n=1

(y(xn;w)− tn)2

• Now consider the limit of large sets, the error per example
is

E = lim
N→∞

1

2N

N∑
n=1

(y(xn;w)− tn)2

=
1

2

∫ ∫
(y(x;w)− t)2p(t,x)dtdx

• This is the average (or expected) error on a test datum
(x, t), which we call the generalization error.
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The generalization error contd

• The generalization error

E =
1

2

∫ ∫
(y(x;w)− t)2p(t|x)p(x)dtdx

• can be rewritten using the definitions

< t|x > =

∫
tp(t|x)dt

< t2|x > =

∫
t2p(t|x)dt

{y − t}2 = {y− < t|x > + < t|x > −t}2

= {y− < t|x >}2 + 2{y− < t|x >}{< t|x > −t}
+ {< t|x > −t}2
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Regressions

• Then the generalization error becomes

E =
1

2

∫ ∫
(y(x;w)− t)2p(t|x)p(x)dtdx

=
1

2

∫ ∫
{y− < t|x >}2 + 2{y− < t|x >}{< t|x > −t}

+ {< t|x > −t}2p(t|x)p(x)dtdx

• leading to the simplification

E =
1

2

∫
(y(x;w)− < t|x >)2p(x)dx

+
1

2

∫
{< t2|x > − < t|x >2}p(x)dx

• we see that the generalization error is minimal (as func-
tion of y(x;w)) if

y(x;w) =< t|x >

• The model should output the conditional mean, hence
be a “regression”
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Regression from joint density

• Let p(t,x) be a joint input-output density

y(x) = < t|x >

=

∫
tp(t|x)dt

=

∫
tp(t,x)dt∫
p(t,x)dt

• where we used p(a|b)p(b) = p(a, b)

• If our joint density is of the form with centers (ν, µ)

p(t,x) =

M∑
j=1

P (j)
1

(2πσ2
j )

d+c
2

exp

(
−(x− µj)

2

2σ2
j

− (t− νj)
2

2σ2
j

)

• then the conditional mean is given by

y(x) =

∑M
j=1 P (j)νj exp

(
−(x−µj)

2

2σ2
j

)

∑M
j=1 P (j) exp

(
−(x−µj)

2

2σ2
j

)
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Radial Basis Functions for regression

• Let the basis function be a gaussian

φj(x) = exp

(
−(x− µj)

2

2σ2
j

)

• then the general RBF network is defined

yj(x) =

M∑
j=1

wk,jφ(x) + wk,0
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Training RBF networks

• For fixed basis functions the weight can be trained using
least squares for the linear model

• For fixed weights we can using gradients (or conjugate
gradients) for the the basis function parameters.
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Training RBF networks

• If the cost function is

E(w) =
1

2

N∑
n=1

∑

k

(tnk − yn
k )2

=
1

2

N∑
n=1

∑

k


tnk −

Nh∑
j=1

wkjφj(x
n)




2

φj(x
n) = exp

(
−(xn − µj)

2

2σ2
j

)

• Then the derivatives w.r.t. µj, σ
2
j become

∂E

∂µj

=

N∑
n=1

∑

k

(yn
k − tnk)wkjφj(x

n)
(xn − µj)

σ2
j

∂E

∂σj
=

N∑
n=1

∑

k

(yn
k − tnk)wkjφj(x

n)
(xn − µj)

2

σ3
j
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Training RBF networks cont’d

• For a given set basis functions we can find the optimal
weights (linear model)

∂E

∂wkj
=

N∑
n=1

∑

k

(yn
k − tnk)φj(x

n)

• Equating this to zero we find the solution

W = BA−1

Ajj′ =
1

N

N∑
n=1

φj(x
n)φj′(x

n)

Bkj =
1

N

N∑
n=1

tnkφj(x
n)

26



Training RBF networks cont’d

• If we regularize the weight estimate by weight decay, the
augmented cost function is,

Ẽ(w) =
1

2

N∑
n=1

∑

k

(tnk − yn
k )2 +

1

2
α

∑

kj

w2
kj

• and the derivative

∂Ẽ

∂wkj
=

∂E

∂wkj
+ αwkj

• Hence the regularized solution

W̃ = B(A + α1)−1
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