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Signal Processing in Non-linear Systems:

Lecture 7

• Exam dates

• The signal detection problem

• Maximum likelihood estimation

• Two class estimation

• Properties of the costfunction

• Multiple classes

• Reduced output coding

• Pruning and weight decay
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Signal detection: Bayes decision theory

• A signal detection system (or pattern classifier) provides
a rule for assigning a measurement to a given signal cat-
egory (class)

• Hence, a classifier divides measument space (feature space)
into disjoint regions R1,R2, ...,Rc, such that measure-
ments that fall into region Rk are assigned with class
Ck.

• Boundaries between regions are denoted decision sur-
faces or decision boundaries

2



Signal Detection: Bayes decision theory

Figure 1: Schematic plot of the densities for a measured signal drawn from either of two
populations C1, C2

P (error) = P (x ∈ R2, C1) + P (x ∈ R1, C2)

= P (x ∈ R2|C1)P (C1) + P (x ∈ R1|C2)P (C2)

=

(∫

R2

p(x|C1)dx

)
P (C1) +

(∫

R1

p(x|C2)dx

)
P (C2)

• The probability of error is minimized if we assign points
to R1, whenever p(x|C1)P (C1) > p(x|C2)P (C2)

• Using Bayes’ theorem, this is equivalent to assign points
to R1, whenever p(C1|x) > p(C2|x), since we can di-
vide by p(x) on both sides of the inequality. Hence, the
Bayes optimal signal detection system chooses the most
probable class given the measurement.
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The learning problem

• Supervised learning: Learning relations between sets of
variables e.g. between input and output variables, condi-
tional distributions p(output|input).

• Unsupervised learning: Learning the distribution of a set
of variables p(input).

The Bayesian paradigm

• The output density of the measured signals (t,x) is mod-
eled by a parameterized density: p(t|x) ∼ p(t|x,w).

• Let χ = {(t1,x1), (t2,x2), ..., (tN ,xN)} be a training
set

• Objective: Find the distribution of the parameter vector,
p(w|χ), hence the parameters are considered stochastic.
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The likelihood function

• Let χ = {(t1,x1), (t2,x2), ..., (tN ,xN)} be the training
set

• We use Bayes theorem

p(w|χ) =
p(χ|w)p(w)

p(χ)

• The function p(χ|w) is called the likelihood function
(more correct the likelihood of the parameter vector θ).
The density p(w) is called the a priori or prior param-
eter distribution.

• If the prior is “flat” in the neighborhood of the peak of
p(χ|w), we have

p(w|χ) ∝ p(χ|w)

• ...and finding the most probable parameters is equivalent
to finding the maximum likelihood parameters.
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Maximum likelihood & optimization

• For independent examples, χ = {(t1,x1), (t2,x2), ..., (tN ,xN)},
the likelihood function factorizes

p(χ|w) =

N∏
n=1

p(tn|xn,w)p(xn) = p(χt|χx,w) ∗ p(χx)

• Many algorithms are based on minimizing an index or
cost function

E(w) = − log p(χt|χx,w) =

N∑
n=1

− log p(tn|xnw)
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Least squares as maximum likelihood

• We seek a conditional density model of the form

t = fw(x) + ν

p(t|x, σ2,w) =
1√

2πσ2
exp

(
− 1

2σ2
(t− fw(x))2

)

p(χt|χx, σ
2, θ) =

(
1√

2πσ2

)N

exp

(
− 1

2σ2

N∑
n=1

(tn − fw(xn)2

)

E(w, σ2) =
N

2
log 2πσ2 +

1

2σ2

N∑
n=1

(tn − fw(xn))
2

• Hence, maximizing the likelihood for Gaussian noise leads
to a least squares problem (for w).

• Note, the noise variance is always given trivially by

σ̂2 =
1

N

N∑
n=1

(tn − fŵ(xn))
2
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The generalization error: “The Hidden agenda”

• Let a training set of independent examples be given by
D = {(t1,x1), ..., (tN ,xN)}.

• The training error pr. example of the model p(t|x,w)
is given by

E =
1

N

N∑
n=1

− log p(tn|xn,w)

this is what we use to find good parameters w.

• However, what we really want is that the probability of
future data points is high, i.e., that the typical cost

Ek = − log p(tk|xk,w)

is low. A model that assigns high probability to all future
data point is close to the true model, hence, a good
generalizer.

• So, let us define the generalization error:

E = lim
M→∞

1

M

M∑

k=1

− log p(tk|xk,w)

=

∫ ∫
− log[p(tk|xk,w)]p(t|x)dtp(x)dx

This is the average (or expected) error on a test datum
(t,x).
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Two class problem

• Let the labels for a two class problem be tn = 0 for one
class and tn = 1 for the other.

• Let the network output be 0 ≤ y ≤ 1 be the probability
of t = 1, then

• we can write the likelihood as

p(χt|χx,w) =

N∏
n=1

p(tn|xn,w)

=

N∏
n=1

y(xn|w)tn[1− y(xn|w)](1−tn)

• and the costfunction becomes

E(w) = −
∑
n=1

tn log y(xn|w) + (1− tn) log[1− y(xn|w)]

• this is called the entropic costfunction
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Properties of the costfunction

• The cost is minimal if yn = tn

E(w) = −
∑
n=1

tn log y(xn|w) + (1− tn) log[1− y(xn|w)]

• the derivative w.r.t. y is

∂E

∂yn
= −

[
tn
yn
− 1− tn

1− yn

]

Figure 2: Entropic costfunction: dependence on yn
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Properties of the costfunction cont’d

• The entropic costfunction penalizes wrong decisions more
heavily than least squares method:

E(w) = −
∑
n=1

tn log y(xn|w) + (1− tn) log[1− y(xn|w)]

• Let tn = 1 and yn = 1− εn (correct decision)

En = − log yn = − log[1− εn] ≈ εn

• Let tn = 0 and yn = 1− εn (very wrong decision!)

En = − log[1− yn] = − log[1− (1− εn)] = log εn

• Now for the sum of squares costfunction we have for the
same situations

En = (1− (1− εn))
2 = (εn)

2

En = (0− (1− εn))
2 = (1− εn)

2
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Properties of the costfunction cont’d

• We use 0 ≤ y ≤ 1 coding of output unit
based on linear standard MLP (ao(x|w))

y(x|w) =
1

1 + exp(−ao(x|w))

• Backprop rule

∂En

∂wjk
= δn

j z
n
k

• The output weight derivative is given by

δn
o =

∂En

∂an
o

=
∂En

∂yn

∂yn

∂an
o

=
yn − tn

yn(1− yn)

∂g(an
o)

∂an
o

the derivative is given by g′(a) = g(a)[1− g(a)]

• and the output error is then simply

δn
o =

yn − tn

yn(1− yn)
yn(1− yn) = yn − tn
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Multiple classes

• We use 0 ≤ y 1 coding for C classes and we want the
outputs to be the posterior probabilities P (C|x), hence
they “should sum to one”

yk(x) =
exp ak(x)∑
k exp ak(x)

• Targets are represented by 0-1 vectors:

tk = [0, 0, 0, ..., 1, 0, 0]

• The likelihood function is given by

p(t|x) =

C∏

k=1

yk(x)tk
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Multiple classes cont’d

• The likelihood function is given by

p(t|x) =

C∏

k=1

yk(x)tk

E = −
∑

n

∑

k

tnk log yn
k

• The derivatives are relatively simple again

∂En

∂ak
=

∑

k′

∂En

∂yk′

∂yk′

∂ak

∂yk′

∂ak
= δkk′yk − yk′yk

∂En

∂yk′
= − tk′

yk′

• and we find
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∂En

∂ak
=

∑

k′

tk′

yk′
(δkk′yk − ykyk′)

= −(tk − yk

∑

k′
tk′)

= yk − tk
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Expansion around a minimum

• At a minimum ∇E = 0

E(w) ≈ E(w∗) +
1

2
(w −w∗)T H(w∗) (w −w∗)

• The Hessian is real and symmetric, hence a has a set of
orthonormal eigenvectors

Huj = λjuj

u>i uj = δij

• At a minimum the Hessian is positive: v>Hv > 0

• in particular for all eigenvectors

u>j Huj = λj > 0

• hence, when the Hessian is positive all eigenvalues are
positive

16



Regularization by weight decay

• Weight decay is a means of soft capacity control

Ẽ(w) = E(w) +
1

2
νwTw

• Analysis of weight decay: Second order Taylor expansion
of the costfunction

E(w) ≈ E(w0) +
∑

j

∂E

∂wj
(wj − w0,j)

+
1

2

∑

j,k

∂2E

∂wj∂wk
(wj − w0,j) (wk − w0,k)

E(w) ≈ E(w0) +
∂E

∂w
(w −w0)

+
1

2
(w −w0)

T ∂2E

∂w∂wT
(w −w0)

• The matrix H = ∂2E
∂w∂wT is called the Hessian
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Weight decay

• Analysis of weight decay:

E(w) ≈ E(w0) +
∂E

∂w
(w −w0)

+
1

2
(w −w0)

T H (w −w0)

• Hence the minimum solves

∂E

∂w
+ H (w −w0) = 0

w∗ = w0 −H−1∂E

∂w
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Weight decay

• Now if there is a non-zero weight decay

∂Ẽ(w)

∂w
=

∂E

∂w
+ νw

• Hence the new minimum solves

∂E

∂w0
+ H0(w

∗ −w0) + ν(w∗ −w0) = 0

• while the old minimum solves

∂E

∂w0
+ H0(w −w0) = 0

• this means that the new and the old minima are related
as

w∗ −w0 = (H0 + ν1)−1 H0(w −w0)

19



Saliency: Optimal Brain Damage

• How much does the training error increase if we delete a
weight

• Second order expansion:

E(w) ≈ E(w∗) +
∂E

∂w
(w −w∗)

+
1

2
(w −w∗)T H (w −w∗)

• Deletion of the j’th weight: w −w∗ = wjej

E(w) ≈ E(w∗) +
∂E

∂w
wjej

+
1

2
wje

T
j Hwjej

E(w) ≈ E(w∗) +
∂E

∂wj
wj

+
1

2
Hj,jw

2
j
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Saliency: Optimal Brain Damage

• However, in the minimum the first derivative is zero,
hence

∆E(w)obd ≈ 1

2
Hjjw

2
j

defining the OBD saliency

• If the retraining contribution is included (the un-pruned
weights are not optimal after pruning) we get instead the
OBS saliency

∆E(w)obs ≈ 1

2

w2
j

(H−1)jj
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Pruning and example

• We use pruning by OBD

• Stop pruning based on generalization error
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