
COURSE 02457

Signal Processing in Non-linear Systems:

Lecture 2

• Probabilities and densities

• Conditional probabilities and densities

• Bayes’ theorem

• 1D Normal distribution

• Multivariate normal distribution

• Correlations

• Signal detection with normal distributions

• Features & the curse of dimensionality
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Conditional probabilities, Bayes’ theorem

Figure 1: The measured signals take (discrete) values X and each signal is assigned to one of
the classes C1, C2. The number of dots in each celle corresponds to the number of signals that
fall in the given class and have taken on the value X

P (Ck, X
l) = P (X l|Ck)P (Ck)

P (Ck, X
l) = P (Ck|X l)P (X l)

P (Ck|X l) =
P (X l|Ck)P (Ck)

P (X l)

P (X l|Ck) =
P (Ck|X l)P (X l)

P (Ck)
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Conditional probabilities cont’d

P (C1, |X l) + P (C2|X l) = 1

P (X l|C1)P (C1)

P (X l)
+

P (X l|C2)P (C2)

P (X l)
= 1

P (X l|C1)P (C1) + P (X l|C2)P (C2) = P (Xl)
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Conditional probabilities cont’d

Figure 2: Schematic plot of the histograms for a measured signal drawn from either of two
populations C1, C2

Figure 3: Corresponding P (X)

Figure 4: Corresponding P (C|X)’s
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The probability density function p(x)

• In one dimension, the probability density function p(x)
is characterized by

P (x ∈ [a, b]) =

∫ b

a

p(x)dx

and expectations are computed by

E(f (x)) =

∫

Domain of x

f (x)p(x)dx

the density function is normalized

P (x ∈ Domainofx) =

∫

Domain of x

p(x)dx = 1

The ‘average value of x’ (the mean of x)

E(x) ≡ µ =

∫

Domain of x

xp(x)dx

The spread of x around it’s mean (the standard deviation)

σ =

√∫

Domain of x

(x− µ)2p(x)dx
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The probability density function p(x)

• In the multivariate case the probability density function
p(x) is characterized by

P (xj ∈ [aj, bj]|j = 1, .., d) =

∫ b1

a1

...

∫ bd

ad

p(x)dx

and expectations are computed by

E(f (x)) =

∫

Domain of x

f (x)p(x)dx

the density function is normalized E(1) = 1.

The ‘average value of x’ (the mean of x)

E(x) ≡ µ =

∫

Domain of x

xp(x)dx

The spread of x around it’s mean (the standard devia-
tion) needs to be characterized by a matrix!

Σ =

∫

Domain of x

(x− µ)(x− µ)>p(x)dx
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Bayes’ theorem – multivariate version

P (Ck,x) = p(x|Ck)P (Ck)

P (Ck,x) = P (Ck|x)p(x)

P (Ck|x) =
p(x|Ck)P (Ck)

p(x)

p(x|Ck) =
P (Ck|X l)p(x)

P (Ck)

c∑

k=1

P (Ck|x) = 1

c∑

k=1

p(x|Ck)P (Ck) = p(x)
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Signal detection: Bayes decision theory

• A signal detection system (or pattern classifier) provides
a rule for assigning a measurement to a given signal cat-
egory (class)

• Hence, a classifier divides measument space (feature space)
into disjoint regions R1,R2, ...,Rc, such that measure-
ments that fall into region Rk are assigned with class
Ck.

• Boundaries between regions are denoted decision sur-
faces or decision boundaries
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Signal Detection: Bayes decision theory

Figure 5: Schematic plot of the densities for a measured signal drawn from either of two
populations C1, C2

P (error) = P (x ∈ R2, C1) + P (x ∈ R1, C2)

= P (x ∈ R2|C1)P (C1) + P (x ∈ R1|C2)P (C2)

=

(∫

R2

p(x|C1)dx

)
P (C1) +

(∫

R1

p(x|C2)dx

)
P (C2)

• The probability of error is minimized if we assign points
to R1, whenever p(x|C1)P (C1) > p(x|C2)P (C2)

• Using Bayes’ theorem, this is equivalent to assign points
to R1, whenever p(C1|x) > p(C2|x), since we can di-
vide by p(x) on both sides of the inequality. Hence, the
Bayes optimal signal detection system chooses the most
probable class given the measurement.
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The loss matrix

• The loss matrix with elements Lk,j specifies
the penalty, or loss incured by assigning a signal to
class Cj when it in fact belongs to class Ck

• The expected loss for patterns in class k, and the total
risk are

Rk =

c∑
j=1

Lk,j

∫

Rj

p(x|Ck)dx

R =

c∑

k=1

RkP (Ck)

=

c∑
j=1

∫

Rj

c∑

k=1

Lk,jp(x|Ck)P (Ck)dx

• The risk is minimized if the integrand is minimized in all
points x, hence, if the region Rj is chosen so that∑c

k=1 Lk,jp(x|Ck)P (Ck) <
∑c

k=1 Lk,ip(x|Ck)P (Ck)
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Uncertain decisions: Rejection mechanisms

• For signal detection systems for nosiy data

(class overlap) we can reduce the error rate by

rejecting uncertain decisions if the probability

of correct classification is low

max
k

P (Ck|x) < θ, θ ∈ [0, 1]

• The rejection threshold θ is a control parameter

the reject rate is given by:

ρ(θ) =

∫
Θ

(
θ −max

k
P (Ck|x)

)
p(x)dx
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The uni-variate normal distribution

• In one dimension, the normal distribution’s probability
density function is given by

p(x|µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)

where the mean value parameter is

µ =

∫ ∞

−∞
x

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
dx

and the variance,

σ2 =

∫ ∞

−∞
(x− µ)2

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
dx
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Multivariate normal distribution

• In d dimensions, the multivariate normal probability den-
sity function is given by

p(x|µ,Σ) =
1√

(2π)d|Σ| exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

where µ is a d-dimensional vector, and Σ is a d × d
covariance matrix.
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Discriminant functions

• A signal detection system divides signal/measurement
space in regions R. A set of discriminant functions
yj(x) are defined so that

yj(x) > yk(x) j 6= k,x ∈ Rj

• Bayes decision theory:

yk(x) = P (Ck|x)

• Special case for binary decisions: A single function de-
fines the decision boundary:

y(x) = y1(x)− y2(x) = 0
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Detecting signals with normal distributions

• The k’th class has a prior probability P (Ck)

and is normally distributed:

p(x|Ck) =
1

(2π)d/2|Σk|1/2 exp

(
−1

2
(x− µk)

′Σ−1
k (x− µk)

)

• The Bayes rule is based on the posterior

P (Ck|x) =
p(x|Ck)P (Ck)

p(x)

• or the discriminant functions

yk(x) = log p(x|Ck)P (Ck)

= −1

2
(x− µk)

′Σ−1
k (x− µk)−

1

2
log |Σk| + log P (Ck)
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Detecting signals with normal distributions

• Special case: All signal components k have the same
covariance matrix:

yk(x) = −1

2
(x− µk)

′Σ−1(x− µk)−
1

2
log |Σ| + log P (Ck)

yk(x)− yj(x) = (µk − µj)
′Σ−1x

− 1

2
µ′

kΣ
−1µk −

1

2
µ′

jΣ
−1µj + log

P (Ck)

P (Cj)

• NOTE: The decisions made in this case are based on
linear decision surfaces
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The curse of dimensionality

• To specify a map (e.g. a discriminant function) on a
d-dimensional space by dividing the relevant parts of the
this space into L cells pr. dimension requires Ld cells.
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Features

• Often correlations among variables means that there are
only a few relevant dimensions. “Needle in a hay-stack”
problems.

• Such relevant degrees of freedom are called features.

• Examples:

– Image features for melanoma detection

– Adaptive measures for digit recognition

– Texture measures for glaucoma
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Principal component analysis

• Objective to map x → z where the dimension of z is smaller than

x, without loosing signal variance.

• Let uj be an orthonormal basis set in the space of x

x =

d∑
i=1

ziui

δi,j = uT
i uj

zi = uT
i x

x̃ =

M∑
i=1

ziui +

d∑

i=M+1

biui
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Principal component analysis cont’d

• The coefficients bi are estimated using by the following argument

for N example D = {x∞,x∈, ...,xN}

xn − x̃n =

d∑

i=M+1

(zn
i − bi)ui

EM =
1

2

N∑
n=1

(xn − x̃n)2

=
1

2

N∑
n=1

d∑

i=M+1

(zn
i − bi)

2

bi =
1

N

N∑
n=1

zn
i u

T
i x

x =
1

N

N∑
n=1

xn
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Principal component analysis cont’d

• We can rewrite the sum-of-squares error,

EM =
1

2

N∑
n=1

d∑

i=M+1

{uT
i (xn − x)}2

=
N

2

d∑

d=M+1

uT
i Σui

Σ =
1

N

N∑
n=1

(xn − x)(xn − x)T

• typo in equation (8.21) in Bishop, misses a factor 1/N in definition

of Σ
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Principal component analysis cont’d

• Let ui be the eigenvectors of Σ, and λi the eigenvalues, then

EM =
N

2

d∑

d=M+1

λi

• Hence, we can minimize this error by choosing the eigenvalues to

be the set of the (d− (M + 1)) smallest eigenvalues.

• The map we have sought is then from x to the vector z = (z1, z2, ..., zM)
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