COURSE 02457

Signal Processing in Non-linear Systems:

Lecture 4

e The linear model revisited

e Properties of linear discriminants
e The generalization error

e Approximation and regressions

e The bias-variance trade-off

e Test sets

e The learning curve

e Weight decay



Discriminant functions

e A signal detection system divides signal/measurement
space in regions R. A set of discriminant functions
y;(x) are defined so that

yi(x) > yp(x) j#£kxeR,

e Bayes decision theory:

yk(x) = P(Cy|x)

e Special case for binary decisions: A single function de-
fines the decision boundary:



The linear model

e Linear discriminant function for two classes

y(x) = w' x + wp
e Terminology: w are called the weights, and wy is called
the threshold.

e Simplify by dummy input

T

y(x) =wix+wy=w

e

e wl = (wp,w) and x = (1, x)



The linear discriminant

e Linear discriminant functions for multiple classes
_ T
Yr(X) = Wi X + wpg

e Deciding between two classes 7, k

yk(x) — y;(x) = (Wi — w;) %+ (wiro — wjo)

e Decision boundary between two classes j, k

(Wk — Wj)TX + (ZU}CO — ’lU]'()) =0



Decision regions

e Decision regions of the multiclass linear discriminant are
convex (and simply connected)

X =ax? + (1 — a)x”

o Let x* x% € Ry, hence yi(x?) > y;(x?) and y;(xP) >
y;(x7).

-~ T

B(®) = whlax? + (1 - a)x)
= ayp(x”) + (1 - a)y(x”)
> ag;(x*) + (1 - a)y,(x7)
= on]TXA + (1 — oz)ijxB
= ij(ozXA + (1 - a)x”
= y;(X)

e Thus all points along the line between x* and x” are
contained in the decision region R}, (convex and simply
connected).



Logistic regression

e Let the class-conditional probability densities for a two-
class problem be given by

1

/o

e where the classes have identical
covariance matrices 21 = Yo = X

TR (—%(X — ) 27 (x - w))

p(x|Cy) =

e In this case the posterior probabilities are

p(x|C1) P(CY)
p(Cl X) N p(X 01>P(01) —|—p<X CQ)P(CQ)
p(C X) _ p<X‘02>P(02>
’ p(x|C1)P(Ch) + p(x|Co) P(Ch)
Ol — 1
PO = T G PG JpxIC P(CL)

1
1 4+ exp (—a(x))




Logistic regression cont'd

e The logistic regression Bayes decisions are based on

1

p(Cilx) = 1 4 exp (—a(x))

e p(C1|x) > 0.5 when the linear discriminant
function given by

) = S(x— )" (x—
- %(X — 1) 27 (x = ) + log

P(Cy)
P(Cy)

P 1
= (=)' X — o By + oy B

2 2
P(Cy)
P(CY)

+ log

.. Is positive



Logistic regression cont'd

e Hence, we have a recipy for designing a two class detec-
tor:
Estimate the two class mean vectors and the common
covariance matrix

]
Ky = E;X
_ 1 N2 n
Ho = N2n:1X

n=1

N
P<Ol> - Ny —|—1N2

.
P(Cy) = -



The learning problem

e Supervised learning: Learning relations between sets of
variables e.g. between input and output variables, condi-
tional distributions p(output|input).

e Unsupervised learning: Learning the distribution of a set
of variables p(input).

The Bayesian paradigm

e The output density of the measured signals (¢, x) is mod-
eled by a parameterized density: p(t|x) ~ p(t|x, w).

o Let v = {(t!,x), (3, x?), ..., (t",x")} be a training
set

e Objective: Find the distribution of the parameter vector,
p(W|x), hence the parameters are considered stochastic.



The likelihood function

o Let v = {(t},x1), (¢%,x?), ..., (", x™)} be the training
set

e \We use Bayes theorem

p(x|w)p(w)
p(x)

p(wlx) =

e The function p(x|w) is called the likelihood function
(more correct the likelihood of the parameter vector ).
The density p(w) is called the a priori or prior param-
eter distribution.

o If the prior is “flat” in the neighborhood of the peak of
p(x|w), we have

p(wlx) o< p(x|w)

e ...and finding the most probable parameters is equivalent
to finding the maximum likelihood parameters.
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Maximum likelihood & optimization

e For independent examples, v = {(t!,x!), (#*,x?), ..., (t",x")},
the likelihood function factorizes

p(xIw) = | [ p(t" 150, w)p(x") = p(xit]X3 W) 5 DX

n=1

e Many algorithms are based on minimizing an index or
cost function

N

E(w) = —logp(xilxx w) = Y | —log p(t"|x,w)

n=1
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Least squares as maximum likelihood

e We seek a conditional density model of the form

e Hence, maximizing the likelihood for Gaussian noise leads
to a least squares problem (for w).

e Note, the noise variance is always given trivially by

N
0% = Z wan



The generalization error: “The Hidden agenda”

e Let a training set of independent examples be given by
D= {txh), ..., ", x")}.

e The training error pr. example of the model p(t|x, w)
is given by
| N
E=—) —logp(t"[x",w)

n=1

this is what we use to find good parameters w.

e However, what we really want is that the probability of
future data points is high, i.e., that the typical cost

E" = —log p( )

is low. A model that assigns high probability to all future
data point is close to the true model, hence, a good
generalizer.

e So, let us define the generalization error:
| M

o k| k
E = A}gnooMZ—logp(t x", W)

_ / / log[p(t*[x*, w)]p(t|x)dtp(x)dx

This is the average (or expected) error on a test datum
(t,%).
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The generalization error

e Let a training set be given by D = {(t!, x!), ..., (", x")}.

e The mean square error of the model y(x; w) is given by

N

E=2) (yx"w)—t")

n=1

e Now consider the limit of large sets, the error per example
5

N
1
E = li —Ej "w) — ")
Neoo 2N i w) =)

= // x; W) — t)°p(t, x)dtdx

e This is the average (or expected) error on a test datum
(x,1).
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The generalization error contd

e [ he generalization error

= / / (y(oc; W) — £ p(t|x)p(x)dtdx

e can be rewritten using the definitions

<tlx > = /tp(t|x)dt

< tlx > = /tQp(t|X)dt

{y—t}* = {y— <t|x >+ < t|x > —t}*
= {y— <tlx >V +2{y— < tlx >H< t|x > —t}
+ {< t|x > —t}*
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Regressions

e Then the generalization error becomes

E =5 [ [ xw) = tPpltop(xdtax
= %//{y— <tlx > +2{y— <tlx>H< t|x > —t}

+ {< t|x > —t}*p(t|x)p(x)dtdx

e leading to the simplification

E = %/(y(x, w)— < t|x >)*p(x)dx
+ %/{< t*x > — < t|x >*Ip(x)dx

e we see that the generalization error is minimal (as func-
tion of y(x;w)) if
y(x; w) =< t|x >

e The model should output the conditional mean, hence
be a “regression”
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The bias-variance trade-off

e When training a model we have only a finite training set,
hence the model can only find the best approximation
minimization the training error

1N

=23y w) — )

n=1

e leading to Woptimal = W(D), hence the error in a partic-
ular test point

(y(x; w(D)) — t)°

will depend on the particular training set.

e The expected value of this quantity is,

E[(y(x; w(D)) — 1)
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The bias-variance trade-off cont'd

e The expectation
& |y w(D))— < tx >)?]

can be rewritten
(y(x;w(D)) — <t]x>)* =
{y(x) — Eply(x)] + Eply(x)]— < t|x >}
= {y(x) — Eply(x)]}* + {Eply(x)]— < t]x >}
+ 2{y(x) = Eply(x)|HEply(x)|— < t|x >}

e taking expectations w.r.t. £p,

—_—

&n |(yixw(D)— < tlx >)°| = &b [{y(x) - Enly(x)]}]
+ {Eply(x))— < tlx >)’
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Test sets

e Generalization errors can not be measured, but can be
estimated using a finite test set

e The bias-variance trade-off quantities can be estimated
by drawing multiple training sets (can in fact be overlap-
ping i.e. cross-validation)
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Crossvalidation

e Generalization errors can not be measured, but can be
estimated using a finite test set

e We would like to use as many examples as possible for
training.

e Crossvalidation: Split the data set in V' subsets D,

D = Uz‘)/zlpv <1>

e For v = 1,...,V train on D/D, and estimate the test
error by

1
Etest — V;Ev
1
B = o1 3 (xw) — 1)
v neD,,

e Extreme (and some times optimal): V = N, aka leave-
one-out crossvalidation
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Model capacity and test errors

e The Generalization error depends on the interplay be-
tween model flexibility and training set size

e The learning curve is the relation between generalization
and training set size: Fi(N) vs. N.

e The generalization error is determined by the complexity
of the model and the amount of data V.

e The model complexity is controlled by reqularization
and by parameter pruning
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Regularization by weight decay

e Weight decay is a means of soft capacity control

~ 1
E(w)=E(w)+ §I/WTW

e Analysis of weight decay: Second order Taylor expansion
of the costfunction

0°FE
Owow?!

(W — wy)

2
e The matrix H = == aET is called the Hessian
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Weight decay

e Analysis of weight decay:

E(w) ~ E(wg) + g—f’ (W — wy)
—% (W — WO)T H(w — wy)

e Hence the minimum solves

oF
a—W—l_H(W_WO):O

OF
w'=w,—- H!=——

Ow
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Weight decay

e Now if there is a non-zero weight decay

aE(W) = 6—E +vw

ow  Ow

e Hence the new minimum solves

Ok
Two + Ho(w" —wo) + v(w" — wy) =0

e while the old minimum solves

or
— H old — =0
W -+ ()<W 1d W())

e this means that the new and the old minima are related
as

w' —wy = (Hy + 1) Hy(woq — o)
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