COURSE 02457

Signal Processing in Non-linear Systems:

Lecture 7
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e The signal detection problem

e Maximum likelihood estimation
e Two class estimation

e Properties of the costfunction
e Multiple classes

e Reduced output coding

e Pruning and weight decay



Signal detection: Bayes decision theory

e A signal detection system (or pattern classifier) provides
a rule for assigning a measurement to a given signal cat-
egory (class)

e Hence, a classifier divides measument space (feature space)
into disjoint regions R, Ro, ..., R., such that measure-
ments that fall into region R; are assigned with class

Cr.

e Boundaries between regions are denoted decision sur-
faces or decision boundaries



Signal Detection: Bayes decision theory

Figure 1: Schematic plot of the densities for a measured signal drawn from either of two
populations Cy,Co

P(error) = P(x € Ry,C1) + P(x € Rq,Co)
= P(CIZ € R2|61>P<Cl> + P(CE € RllCQ)P(CQ)

- (/RQp(g;ycl)dg;> P(Cy) + (/Rlp(xlcz)dx> P(Cy)

e The probability of error is minimized if we assign points
to Rq, whenever p(z|C1)P(Cy) > p(x|C2) P(Co)

e Using Bayes' theorem, this is equivalent to assign points
to Ry, whenever p(Ci|z) > p(Cslz), since we can di-
vide by p(x) on both sides of the inequality. Hence, the
Bayes optimal signal detection system chooses the most
probable class given the measurement.
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The learning problem

e Supervised learning: Learning relations between sets of
variables e.g. between input and output variables, condi-
tional distributions p(output|input).

e Unsupervised learning: Learning the distribution of a set
of variables p(input).

The Bayesian paradigm

e The output density of the measured signals (¢, x) is mod-
eled by a parameterized density: p(t|x) ~ p(t|x, w).

o Let v = {(t!,x1), (2, x?), ..., (t",x")} be a training
set

e Objective: Find the distribution of the parameter vector,
p(W|x), hence the parameters are considered stochastic.



The likelihood function

o Let v = {(t},x1), (#3,x?), ..., (", x™)} be the training
set

e \We use Bayes theorem

p(x|w)p(w)
p(x)

p(wlx) =

e The function p(x|w) is called the likelihood function
(more correct the likelihood of the parameter vector ).
The density p(w) is called the a priori or prior param-
eter distribution.

e If the prior is “flat” in the neighborhood of the peak of
p(x|w), we have

p(wlx) o< p(x|w)

e ...and finding the most probable parameters is equivalent
to finding the maximum likelihood parameters.



Maximum likelihood & optimization

e For independent examples, v = {(t!,x!), (#*,x?), ..., (tV, x")},
the likelihood function factorizes

pxIw) = | [ p(#" %0, w)p(x") = p(xilxx W) * ()

n=1

e Many algorithms are based on minimizing an index or
cost function

N
E(w) = —logp(xilxx W) = Y —log p(t"|x,w)

n=1



Least squares as maximum likelihood

e We seek a conditional density model of the form

e Hence, maximizing the likelihood for Gaussian noise leads
to a least squares problem (for w).

e Note, the noise variance is always given trivially by

O':

N
Z — fa(xn))

2|H

\]



The generalization error: “The Hidden agenda”

e Let a training set of independent examples be given by
D= {(t,x!),..., (", x")}].

e The training error pr. example of the model p(t|x, w)
is given by
| N
E=—) —logpt"[x",w)

n=1

this is what we use to find good parameters w

e However, what we really want is that the probability of
future data points is high, i.e., that the typical cost

E" = —log p( )

is low. A model that assigns high probability to all future
data point is close to the true model, hence, a good
generalizer.

e So, let us define the generalization error:

1 M

o k| k
E = A}inooMZ—logp(t x", W)

_ / / log[p(t"[x*, w)]p(t|x)dtp(x)dx

This is the average (or expected) error on a test datum
(t,%).



Two class problem

e Let the labels for a two class problem be ¢,, = 0 for one
class and t,, = 1 for the other.

e Let the network output be 0 < y < 1 be the probability
of t = 1, then

e we can write the likelihood as

::]2

Xt’X.I') n‘XTm

N
H (x| W)™ [1 — (Xn|w>](1_tn)

e and the costfunction becomes

— Ztn log y(x,|w) + (1 — t,) log|1 — y(x,|W)]

e this is called the entropic costfunction



Properties of the costfunction

e The cost is minimal if y,, = ¢,

E<W) - Ztn 1Og y<Xn|W) + (1 o tn) 1Og[1 o y<Xn|W)]

e the derivative w.r.t. y is

Figure 2: Entropic costfunction: dependence on y,
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Properties of the costfunction cont'd

e T he entropic costfunction penalizes wrong decisions more
heavily than least squares method:

E<W> - Ztn 1Og y(Xn|W> + (1 o tn) 1Og[1 o y<Xn|W>]

o lett, =1andy, =1—¢, (correct decision)

E" = —logy, = —log|l —¢,] =~ ¢,

e lett, =0 and y, = 1 — ¢, (very wrong decision!)

E" = —log|l —y,| = —log|l — (1 —¢,)] =loge,

e Now for the sum of squares costfunction we have for the
same situations

B = (1= (1- ) = (&)
E"=0—-(1-¢))=(1—¢,)
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Properties of the costfunction cont'd

e We use 0 < y < 1 coding of output unit
based on linear standard MLP (a,(x|w))

1
1 + exp(—a,(x|w))

y(x|w) =

e Backprop rule

oOR" S

6’ij
e The output weight derivative is given by

° Oap Oy day  y'(1-y") Oap
the derivative is given by ¢'(a) = g(a)[1 — g(a)]

e and the output error is then simply

no__4n

y
5 =
y"(1—y")

y'(1—y")=y" —t"
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Multiple classes

e We use 0 < y 1 coding for C classes and we want the
outputs to be the posterior probabilities P(C'|x), hence
they “should sum to one”

_exp ap(X)
D1, CXP ak(X)

e Targets are represented by 0-1 vectors:

ty = [0,0,0,...,1,0,0]

Yi(X)

e The likelihood function is given by
C

p(tlx) = | [yw(x)™

k=1
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Multiple classes cont'd

e The likelihood function is given by

p(tx) = Hyk
Z Z ty log yy.

e The derivatives are relatively simple again

day. > Oy Oay,

Oy B

0 Okk Yk — Yr'Yk
Qg

OE" oty

Oy Yr!

e and we find
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OE" Lyt
— — 5 / - /
da Z yk/( kR Yk — YkYr)

k./
= —(tx — s Z ty)
k/

= Yr — g
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Expansion around a minimum

e At a minimum VE =0

E(w) ~ E(w*) + % (w —w*) H(w*) (w—w")

e The Hessian is real and symmetric, hence a has a set of
orthonormal eigenvectors

Hllj = )\ju]'
T

u, u; = 0;;
e At a minimum the Hessian is positive: v Hv > 0
e in particular for all eigenvectors
ujTHuj =A; >0
e hence, when the Hessian is positive all eigenvalues are
positive
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Regularization by weight decay

e Weight decay is a means of soft capacity control

~ 1
E(w)=E(w)+ §I/WTW
e Analysis of weight decay: Second order Taylor expansion

of the costfunction

0*°FE
Oowow?!

(W — wy)

2
e The matrix H = == aET is called the Hessian
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Weight decay

e Analysis of weight decay:

E(w) ~ E(wg) + g—f’ (W — wy)
—F1 (W — WO)T H(w — wy)

2

e Hence the minimum solves

oF
a—W—I_H(W_WO):O

OF
w'=wy—H 11—

Ow
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Weight decay

e Now if there is a non-zero weight decay

aE(W) = a—E +vw

ow  Ow

e Hence the new minimum solves

OF
Fwo + Hy(w* — wg) + v(w" —wy) =0

e while the old minimum solves

OF
8—WO + H()(W — W()) =

e this means that the new and the old minima are related
as

w* —wy = (Hy + 1) Hy(w — w)
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Saliency: Optimal Brain Damage

e How much does the training error increase if we delete a
weight

e Second order expansion:

E(w) ~ E(w*)+ g—f’ (W —w")
—|—1 (w—w") H(w—w"

e Deletion of the j'th weight: w — w* = w;e;

Ok

E(W) ~ E<W*)+8—ijej
1
+§wjejTijej
oF
E(w) ~ E(w") + —uw,
(W) = B(W)+ 5w,
1 2
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Saliency: Optimal Brain Damage

e However, in the minimum the first derivative is zero,
hence

1

AE(W)Obd ~ 5 j

defining the OBD saliency

e If the retraining contribution is included (the un-pruned

weights are not optimal after pruning) we get instead the
OBS saliency
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Pruning and example

e We use pruning by OBD

e Stop pruning based on generalization error
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