
COURSE 02457

Signal Processing in Non-linear Systems:

Lecture 6

• Perceptrons

• Gradient descent

• Computing gradients

• Gradient descent and line searches

• Conjugate gradients

• Local quadratic approximation to the cost function

• Newtons method

• Outer product (Gauss) approximation

• Diagonal (pseudo-Gauss) approximation

• Test error estimation

1

The Perceptron

• The Perceptron is due to Rosenblatt (1958):

y(x) = tanh
(
w>x + w0

)

• Note the similarity to the logistic regression model which
was derived as the discriminant function for discrimina-
tion between to normal distribution with identical covari-
ance matrices

2

The Multi-layer Perceptron

• The Multi-layer Perceptron (MLP) was considered by
Minsky and Papert in the early sixties:

y(x) = tanh




nH∑
j=0

Wjhj(x)




zj(x) = tanh
(
w>x + w0

)

z0 = 1

• The hidden units represent the inputs so that the output
unit can solve a linear discrimination problem

3

Feed-forward and feed-back nets

• Feed-forward nets have no loops, hence their evaluation
is uniquely defined.

• General MLP’s can have loops, hence need an associ-
ated evaluation rule. Only relevant for dynamic models
(time series modelling). Sometimes also called recursive
models.

• For time series models: Feed-forward models have finite
memory, while recursive networks implement (arbitrary)
long memory.

4

The MLP learning problem

• Let a training set be given byD = {(t1,x1), ..., (tN ,xN)}.
• The mean square error of the model y(x;w) is given by

E =
1

2

N∑
n=1

(y(xn;w)− tn)2

• Weight decay is a means of soft capacity control, aug-
mented cost function

Ẽ(w) = E(w) +
1

2
νwTw

5

Approximation capabilities

• Linear output MLP is

y(x) =

nH∑
j=0

Wjhj(x)

zj(x) = tanh
(
w>x + w0,j

)

z0 = 1

• is a universal approximation tool for continuous func-
tions.

• The set of linear output MLP’s is dense in the continuous
functions on a compact subset of a vector space: If given
an ε and a continuous target function f (x) on the set
Ω, we can find an MLP network for which

|y(x;w)− f (x)| < ε, ∀x ∈ Ω

6

The Multi-layer Perceptron

• The Multi-layer Perceptron (MLP)

yl(x) =

nH∑
j=0

wl,jzj(x)

zj(x) = tanh
(
w>

j x + wj,0

)

z0 = 1

• The hidden units represent the inputs so that the output
unit can solve a linear discrimination problem

7

The MLP learning problem

• Let a training set be given byD = {(t1,x1), ..., (tN ,xN)}.
• The mean square error of the model y(x;w) is given by

E =
1

2

N∑
n=1

(y(xn;w)− tn)2

8

Gradient descent optimization

• Objective: to solve the equation ∇E = 0

w(τ+1) = w(τ) + ∆w(τ)

∆w(τ) = −η∇E|w(τ)

• η is the learning parameter

• η can be too small: convergence very slow

• η can be too large: oscillatory behavior

9

Backprop for the two layer network

• We compute the gradient w.r.t. any weight in first or second layer

u

E =
1

2

N∑
n=1

(y(xn;w)− tn)2

∂E

∂u
=

1

2

N∑
n=1

∂

∂u
(y(xn;w)− tn)2

=

N∑
n=1

(y(xn;w)− tn)
∂y(xn;w)

∂u

• The network derivative for an output unit weight wj′is given by

∂y(xn;w)

∂wj′
=

∂

∂wj′

nH∑
j=0

wjzj(x)

=

nH∑
j=0

∂

∂wj′
wjzj(x)

= zj′(x)

10

Backprop for the two layer net cont’d

• The network derivative for a hidden unit weight wj′,k′is given by

∂y(xn;w)

∂wj′,k′
=

∂

∂wj′,k′

nH∑
j=0

wjzj(x)

=

nH∑
j=0

wj
∂

∂wj′,k′
zj(x)

= wj′
∂

∂wj′,k′
tanh

(
nI∑

k=0

wj,kx
n
k

)

= wj′

(
1− tanh2

(
nI∑

k=0

wj,kx
n
k

))
∂

∂wj′,k′

nI∑

k=0

wj,kx
n
k

= wj′
(
1− z2

j′
)
xn

k′

11

Backprop for the two layer net cont’d

• Combining we get for the output weight

∂E

∂wj
=

N∑
n=1

(y(xn)− tn)zj(x
n)

≡
N∑

n=1

δnzj(x
n)

• and for the hidden weight

∂E

∂wj,k
=

N∑
n=1

(y(xn)− tn)wj

(
1− z2

j (x
n)

)
xn

k

≡
N∑

n=1

δn
j x

n
k

12

The general Backprop rule

• Consider a hidden unit zj = g(aj), where an
j =

∑
i wj,izi(x

n)

• ... then the derivative can be expressed

∂E

∂wji
=

∑

j′,n

∂En

∂an
j′

∂an
j′

∂wji

=
∑

n

∂En

∂an
j

∂an
j

∂wji

• Let δn
j = ∂En

∂an
j
, note also

∂an
j

∂wji
= zi(x

n), this leads to

∂E

∂wji
=

∑
n

δn
j zi(x

n)

• Computing the δ′s

δn
j ≡ ∂En

∂aj
=

∑

k

∂En

∂ak

∂ak

∂aj

δn
j = g′(an

j)
∑

k

wk,jδ
n
k

13

Gradient descent optimization revisited

• Objective: to solve the equation ∇E = 0

w(τ+1) = w(τ) + ∆w(τ)

∆w(τ) = −η∇E|w(τ)

• η is the learning parameter

• η can be too small: convergence very slow

• η can be too large: oscillatory behavior

• Find η by line search along the search direction
d(τ) = −∇E|w(τ):

w(τ+1) = w(τ) + η(τ)d(τ)

E(η) = E(w(τ) + ηd(τ))

14

Conjugate gradient method

• Objective: to solve the equation ∇E = 0

w(τ+1) = w(τ) + ηd(τ)

• Let g(τ) ≡ ∇E(w(τ)), the optimal η solves

∂

∂η
E(w(τ) + ηd(τ)) = 0

∇E(w(τ) + ηd(τ))>d(τ) = 0

g(τ+1)>d(τ) = 0

• Gradient at optimal point is orthogonal to the search
direction!

g(w(τ+1))>d(τ) = 0

• Choose the search direction so that this property also
holds between new and old search direction:

g(w(τ+1) + ηd(τ+1))>d(τ) = 0

15

Conjugate gradient method cont’d

• Gradient at optimal point is orthogonal to the search
direction! If we search such orthogonal directions we
keep minimal interference.

g(w(τ+1))>d(τ) = 0

• Choose the search direction so that this property also
holds between new and old search direction:

g(w(τ+1) + ηd(τ+1))>d(τ) = 0

• expand to second order:

g(w(τ+1) + ηd(τ+1)) ≈ g(w(τ+1)) + ηHd(τ+1)

(
g(w(τ+1)) + ηHd(τ+1)

)>
d(τ) = 0

d(τ+1)>Hd(τ) = 0

• This defines the conjugate directions.

16

Conjugate gradient method cont’d

• A complete set of conjugate directions can be found for
a quadratic problem:

d(τ+1) = −∇E(τ+1) + β(τ)d(τ)

• with the three alternative definitions (g ≡ ∇E)
(Hestenes-Stiefel, Polak-Ribiere, Fletcher-Reeves):

β(τ) =
g(τ+1)>(g(τ+1) − g(τ))

d(τ)>(g(τ+1) − g(τ))

β(τ) =
g(τ+1)>(g(τ+1) − g(τ))

g(τ)>g(τ)

β(τ) =
g(τ+1)>g(τ)

g(τ)>g(τ)

• Furthermore, if we perform a perfect line search at ev-
ery step the algorithm will converge in W steps for the
quadratic problem. For the general costfunction noth-
ing definitive is known, but it should work close to the
minimum....

17

Newtons method in 1D

• Let the costfunction be approximated,

E(w) = E(w∗) +
1

2
H(w − w∗)2

• The derivative is given by

∂E

∂w
(w) =

∂E

∂w
(w∗) + H(w − w∗)

∂E

∂w
(w) = H(w − w∗)

• This means that the distance from w to w∗ is

w∗ = w −H−1∂E

∂w
(w)

• Hence the optimal step is ∆w = −H−1∂E
∂w(w)

18

Newtons method in multiple dimensions

• At a minimum ∇E = 0

E(w) ≈ E(w∗) +
1

2
(w −w∗)T H (w −w∗)

∇E(w) ≈ H (w −w∗)

• We find the optimal multivariate step is given by

w∗ = w −H−1∇E(w)

• this is the Newton direction, for a quadratic problem this
solves the optimization problem in one iteration!

19

Hessian for a least squares problem

• The least squares costfunction

E(w) =
1

2

N∑
n=1

(yn − dn)2

• The first derivative is

∂E

∂w
=

N∑
n=1

(yn − dn)
∂yn

∂w

• The second derivative is

∂2E

∂w∂w> =

N∑
n=1

∂yn

∂w

∂yn

∂w

>
+

N∑
n=1

(yn − dn)
∂2yn

∂w∂w>

• The Gauss-Newton or outer product approximation is

∂2E

∂w∂w> ≈
N∑

n=1

∂yn

∂w

∂yn

∂w

>

• The pseudo-Gauss-Newton approximation is to ignore
the off-diagonal terms

20

