COURSE 02457

Signal Processing in Non-linear Systems:

Lecture 3

e Learning problem
e The likelihood function and Bayesian learning

e Maximum likelihood estimation of parameters in the nor-
mal distribution

e Learning by least squares
e Linear models

e Linear discriminants

e Logistic regression

e Fishers linear discriminant



The learning problem

e Supervised learning: Learning relations between sets of
variables e.g. between input and output variables, condi-
tional distributions p(output|input).

e Unsupervised learning: Learning the distribution of a set
of variables p(input).



The Bayesian paradigm

e The density of the measured signals is modelled by a
parameterized density: p(x) ~ p(x|0).

o Let v = {1, 29, 23,...,xx} be a training set

e Objective: Find the distribution of the parameter vector,
p(0]x), hence the parameters are considered stochastic.



The likelihood function

o Let v = {1, 19, 23,...,xN} be a training set

e \We use Bayes theorem

p(x|0)p(0)

p(x) = 200

e The function p(x|0) is called the likelihood function (more
correct the likelihood of the parameter vector ). The
density p(@) is called the a priori or prior parameter
distribution.

e If the prior is “flat” in the neighborhood of the peak of
p(x|0), we have

p(Blx) o< p(x|0)

e ...and finding the most probable parameters is equivalent
to finding the maximum likelihood parameters.



Maximum likelihood & optimization

e For independent examples, x = {1, xo, z3, ..., TN}, the
likelihood function factorize

N

p(x10) = ] [ p(aal6)

n=1

e Many algorithms are based on minimizing an index or
costfunction

E(f) = —logp(x|0) = >  —log p(a,|0)

n=1



1D normal distribution

e Let the parameterized density be a 1D normal distribution

ploli o) = = exp (— (e — )

2mo? 202

e For independent examples, x = {x1, x9, 3, ..., zx}, the likelihood
function becomes

i) = (= 2)Nexp (—%im-ﬁ)

E(p,0°) =



1D normal distribution

e Costfunction for maximum likelihood estimation of mean and vari-
ance

N |
E(p,0%) = 5} log 2mo? + oy Z(:Un — p)?
n=1

e Derivatives are zero as minimum:

0E(n.0) _ 1y
T 72 Z —(zn — )

1 N
ﬁ — N;xn
- 1 N
0 = NZ(wn_ﬁ)Q



Multivariate normal distribution

e For independent examples, y = {x1, X9, X3, ..., Xy}, the likelihood
function becomes

pixlp, X) = (\/|217T72\> exp (—% D (0 — ) SH(x, — u))

N
N 1 _
Ep X)) = ?log]27r2|+§ E (x, — )T x, — p)

n=1
e We need two rules:
alog |A| _ A—la_A
ou ou
OA"! — _A—la_AA—l

ou ou



Multivariate normal distribution

PPUT) 3 =y

aEg;” ) _ gz—l - %2—1 (Z(xn — p)(xn — u)’) D

n=1
N
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n=1
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n—=1
_ 1Y
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Least squares as maximum likelihood

o Let (xx, Xy) = {(x1,¥1), (X2, %2), (X3,93), ..., (XN, YN) },

e We seek a conditional density model of the form

y = fo(x)+v
1 1
plulx.o".0) = e (sl — ulx)))
1 \" .
Pxylxx, 0%,0) = ( ZWQ) eXP( —22 — fo(xn) >
E0,0%) = Elo 2 2+L2N:( — fa(x,))?
) - 9 gamo 20_2 Yn 0\ X&n

e Hence, maximizing the likelihood for Gaussian noise leads to a least
squares problem (for 6).
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Discriminant functions

e A signal detection system divides signal/measurement
space in regions R. A set of discriminant functions
y;(x) are defined so that

yi(x) > yr(x) j#k,x €R,;

e Bayes decision theory:

yi(x) = P(Cy|x)

e Special case for binary decisions: A single function de-
fines the decision boundary:

Yx) = 41(x) — y2(x) =0
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The linear model

e Linear discriminant function for two classes
y(x) = wl x + wp
e Terminology: w are called the weights, and wy is called
the threshold.
e Simplify by dummy input
T

y(x) =wix +w)=w'x

o w!' = (wy, w) and x = (1,x)
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The linear discriminant

e Linear discriminant functions for multiple classes

Yp(X) = ng + W

e Deciding between two classes 7, k

ye(x) — yj(x) = (W, — Wj)TX + (wro — wjo)

e Decision boundary between two classes j, k

(Wi, — W) x + (wpo — wjg) =0

13



Decision regions

e Decision regions of the multiclass linear discriminant are
convex (and simply connected)

X =ax” + (1 — a)x”

o Let x4 xP € Ry, hence yi(x?) > yi(x?) and yi(xP) >
y;(x7).

ye(X) = wi(ax? + (1 — a)xP)
— o) + (1 — a)y(x?)
> ay;(x?) + (1 — a)y;(x7)
= ozijxA + (1 — Ck)W]TXB
= WjT(ozXA + (1 —a)x”?
y;(X)
e Thus all points along the line between x“ and x” are

contained in the decision region R (convex and simply
connected).
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Logistic regression

e Let the class-conditional probability densities for a two-
class problem be given by

1 1 T -1
PNICH) = oy (5 "B

e where the classes have identical
covariance matrices X = Yo = X

e In this case the posterior probabilities are

B p(x|C1)P(CY)
p(Cilx) = p(x|C) pg(;% +> p% %)P(OQ)
p(x|Cs) P(C
p(Calx) = p(x|CP(CY) + p(x|Ca) P(Co)
. 1
PIO) = T I PICy) o O PG

1
1+ exp (—a(x))

15



Logistic regression cont'd

e The logistic regression Bayes decisions are based on

1
L +exp (—a(x))

p(Chlx) =

e p(C1|x) > 0.5 when the linear discriminant
function given by

1 _
a(x) = §<X — 15) T (x — o)
1 Ty—1 P(C)
— —(x — )Y — |
2<X Ml) (X Ml) + 0g P(Cl)
_ 1 _ 1 _
= (= o) 2% = S B+ S B
P(Cy)
|
+ log P(C))

.. Is positive
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Logistic regression cont'd

e Hence, we have a recipy for designing a two class detec-
tor:

Estimate the two class mean vectors and the common
covariance matrix

1 n
H1:EZX

HQINLQZXTL

n=1

N
P<Cl) - Ny —|—1N2

N
P(Cy) = &
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L east squares techniques

e Let a training set be given by D = {(t!, x!), ..., (", x™)},
the sum-of-squares approximation error is given by

N

E= D (WK g — ") (1)

n=1

e The optimal parameters are found by gradient based min-
Imization,

N
oOF
— = Z(WTXn + wy — t")x"
ow —

N
OF
— = Z(WTXn + Wy — tn)
a’LUo 1
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Least squares techniques cont'd

e equations to solve

N
Z(WTXn +wy —t")x" =0
n=1
N
Z(WTXn +wy—t") =0
n=1

n

e the solution is given by in terms of u = (1/N) > x",
and 7 = (1/N) > t"

(i) (i

Wy = —WT/.L+7'

e This can be used to model any linear input-output rela-
tion
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Fishers linear discriminant

e Specific encoding ¢} = N/Ny, t" = —N/Ns

w o< Syt (g — py)

e where Sy = Elogistic

Ny
1
Sw = N Z(Xn — ) (X" — )"

n=1
No
1

TN Z(Xn — o) (X" — o))"

n=1

e Hence, same solution as for the logistic regression system
aka “Fishers linear discriminant”
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