
COURSE 02457

Signal Processing in Non-linear Systems:

Lecture 3

• Learning problem

• The likelihood function and Bayesian learning

• Maximum likelihood estimation of parameters in the nor-
mal distribution

• Learning by least squares

• Linear models

• Linear discriminants

• Logistic regression

• Fishers linear discriminant
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The learning problem

• Supervised learning: Learning relations between sets of
variables e.g. between input and output variables, condi-
tional distributions p(output|input).

• Unsupervised learning: Learning the distribution of a set
of variables p(input).
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The Bayesian paradigm

• The density of the measured signals is modelled by a
parameterized density: p(x) ∼ p(x|θ).

• Let χ = {x1, x2, x3, ..., xN} be a training set

• Objective: Find the distribution of the parameter vector,
p(θ|χ), hence the parameters are considered stochastic.
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The likelihood function

• Let χ = {x1, x2, x3, ..., xN} be a training set

• We use Bayes theorem

p(θ|χ) =
p(χ|θ)p(θ)

p(χ)

• The function p(χ|θ) is called the likelihood function (more
correct the likelihood of the parameter vector θ). The
density p(θ) is called the a priori or prior parameter
distribution.

• If the prior is “flat” in the neighborhood of the peak of
p(χ|θ), we have

p(θ|χ) ∝ p(χ|θ)

• ...and finding the most probable parameters is equivalent
to finding the maximum likelihood parameters.
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Maximum likelihood & optimization

• For independent examples, χ = {x1, x2, x3, ..., xN}, the
likelihood function factorize

p(χ|θ) =

N∏
n=1

p(xn|θ)

• Many algorithms are based on minimizing an index or
costfunction

E(θ) = − log p(χ|θ) =

N∑
n=1

− log p(xn|θ)
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1D normal distribution

• Let the parameterized density be a 1D normal distribution

p(x|µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)

• For independent examples, χ = {x1, x2, x3, ..., xN}, the likelihood

function becomes

p(χ|µ, σ2) =

(
1√

2πσ2

)N

exp

(
− 1

2σ2

N∑
n=1

(xn − µ)2

)

E(µ, σ2) =
N

2
log 2πσ2 +

1

2σ2

N∑
n=1

(xn − µ)2

6



1D normal distribution

• Costfunction for maximum likelihood estimation of mean and vari-

ance

E(µ, σ2) =
N

2
log 2πσ2 +

1

2σ2

N∑
n=1

(xn − µ)2

• Derivatives are zero as minimum:

∂E(µ, σ2)

∂µ
=

1

σ2

N∑
n=1

−(xn − µ)

∂E(µ, σ2)

∂σ2
=

N

2

1

σ2
− 1

2(σ2)2

N∑
n=1

(xn − µ)2

0 =
1

σ̂2

N∑
n=1

−(xn − µ̂)

0 =
N

2

1

σ̂2
− 1

2(σ̂2)2

N∑
n=1

(xn − µ̂)2

µ̂ =
1

N

N∑
n=1

xn

σ̂2 =
1

N

N∑
n=1

(xn − µ̂)2
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Multivariate normal distribution

• For independent examples, χ = {x1,x2,x3, ...,xN}, the likelihood

function becomes

p(χ|µ,Σ) =

(
1√
|2πΣ|

)N

exp

(
−1

2

N∑
n=1

(xn − µ)′Σ−1(xn − µ)

)

E(µ,Σ) =
N

2
log |2πΣ| + 1

2

N∑
n=1

(xn − µ)′Σ−1(xn − µ)

• We need two rules:

∂ log |A|
∂u

= A−1∂A

∂u
∂A−1

∂u
= −A−1∂A

∂u
A−1
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Multivariate normal distribution

∂E(µ, σ2)

∂µ
=

N∑
n=1

−(xn − µ)Σ−1

∂E(µ, σ2)

∂Σ
=

N

2
Σ−1 − 1

2
Σ−1

(
N∑

n=1

(xn − µ)(xn − µ)′
)

Σ−1

0 =

N∑
n=1

−(xn − µ̂)Σ̂
−1

0 =
N

2
Σ̂
−1 − 1

2
Σ̂
−1

N∑
n=1

((xn − µ̂)(xn − µ̂)′) Σ̂
−1

µ̂ =
1

N

N∑
n=1

xn

Σ̂ =
1

N

N∑
n=1

(xn − µ̂)(xn − µ̂)′
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Least squares as maximum likelihood

• Let (χx, χy) = {(x1, y1), (x2, y2), (x3, y3), ..., (xN , yN)},
• We seek a conditional density model of the form

y = fθ(x) + ν

p(y|x, σ2, θ) =
1√

2πσ2
exp

(
− 1

2σ2
(y − fθ(x))2

)

p(χy|χx, σ
2, θ) =

(
1√

2πσ2

)N

exp

(
− 1

2σ2

N∑
n=1

(yn − fθ(xn)2

)

E(θ, σ2) =
N

2
log 2πσ2 +

1

2σ2

N∑
n=1

(yn − fθ(xn))2

• Hence, maximizing the likelihood for Gaussian noise leads to a least

squares problem (for θ).
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Discriminant functions

• A signal detection system divides signal/measurement
space in regions R. A set of discriminant functions
yj(x) are defined so that

yj(x) > yk(x) j 6= k,x ∈ Rj

• Bayes decision theory:

yk(x) = P (Ck|x)

• Special case for binary decisions: A single function de-
fines the decision boundary:

y(x) = y1(x)− y2(x) = 0
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The linear model

• Linear discriminant function for two classes

y(x) = wTx + w0

• Terminology: w are called the weights, and wk0 is called
the threshold.

• Simplify by dummy input

y(x) = wTx + w0 = w̃T x̃

• w̃T = (w0,w) and x̃ = (1,x)
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The linear discriminant

• Linear discriminant functions for multiple classes

yk(x) = wT
k x + wk0

• Deciding between two classes j, k

yk(x)− yj(x) = (wk −wj)
Tx + (wk0 − wj0)

• Decision boundary between two classes j, k

(wk −wj)
Tx + (wk0 − wj0) = 0
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Decision regions

• Decision regions of the multiclass linear discriminant are
convex (and simply connected)

x̂ = αxA + (1− α)xB

• Let xA,xB ∈ Rk, hence yk(x
A) > yj(x

A) and yk(x
B) >

yj(x
B).

yk(x̂) = wT
k (αxA + (1− α)xB)

= αyk(x
A) + (1− α)yk(x

B)

> αyj(x
A) + (1− α)yj(x

B)

= αwT
j xA + (1− α)wT

j xB

= wT
j (αxA + (1− α)xB)

= yj(x̂)

• Thus all points along the line between xA and xB are
contained in the decision region Rk (convex and simply
connected).
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Logistic regression

• Let the class-conditional probability densities for a two-
class problem be given by

p(x|Ck) =
1√

(2π)d|Σ| exp

(
−1

2
(x− µk)

TΣ−1(x− µk)

)

• where the classes have identical
covariance matrices Σ1 = Σ2 = Σ

• In this case the posterior probabilities are

p(C1|x) =
p(x|C1)P (C1)

p(x|C1)P (C1) + p(x|C2)P (C2)

p(C2|x) =
p(x|C2)P (C2)

p(x|C1)P (C1) + p(x|C2)P (C2)

p(C1|x) =
1

1 + p(x|C2)P (C2)/p(x|C1)P (C1)

=
1

1 + exp (−a(x))
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Logistic regression cont’d

• The logistic regression Bayes decisions are based on

p(C1|x) =
1

1 + exp (−a(x))

• p(C1|x) > 0.5 when the linear discriminant
function given by

a(x) =
1

2
(x− µ2)

TΣ−1(x− µ2)

− 1

2
(x− µ1)

TΣ−1(x− µ1) + log
P (C2)

P (C1)

= (µ1 − µ2)
TΣ−1x− 1

2
µT

1 Σ
−1µ1 +

1

2
µT

2 Σ
−1µ2

+ log
P (C2)

P (C1)

... is positive
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Logistic regression cont’d

• Hence, we have a recipy for designing a two class detec-
tor:
Estimate the two class mean vectors and the common
covariance matrix

µ1 =
1

N1

N1∑
n=1

xn

µ2 =
1

N2

N2∑
n=1

xn

Σ =
1

N1 + N2

(
N1∑
n=1

(xn − µ1)(x
n − µ1)

T

+

N2∑
n=1

(xn − µ2)(x
n − µ2)

T

)

P (C1) =
N1

N1 + N2

P (C2) =
N2

N1 + N2
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Least squares techniques

• Let a training set be given byD = {(t1,x1), ..., (tN ,xN)},
the sum-of-squares approximation error is given by

E =
1

2

N∑
n=1

(wTxn + w0 − tn)2 (1)

• The optimal parameters are found by gradient based min-
imization,

∂E

∂w
=

N∑
n=1

(wTxn + w0 − tn)xn

∂E

∂w0
=

N∑
n=1

(wTxn + w0 − tn)
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Least squares techniques cont’d

• equations to solve

N∑
n=1

(wTxn + w0 − tn)xn = 0

N∑
n=1

(wTxn + w0 − tn) = 0

• the solution is given by in terms of µ = (1/N)
∑

xn,
and τ = (1/N)

∑
tn

w = −
(

1

N

N∑
n=1

(xn − µ)(xn − µ)T

)−1 (
1

N

N∑
n=1

(tn − τ )xn

)

w0 = −wTµ + τ

• This can be used to model any linear input-output rela-
tion
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Fishers linear discriminant

• Specific encoding tn+ = N/N1, tn− = −N/N2

w ∝ S−1
W (µ2 − µ1)

• where SW ≡ Σlogistic

SW =
1

N

N1∑
n=1

(xn − µ1)(x
n − µ1)

T

+
1

N

N2∑
n=1

(xn − µ2)(x
n − µ2)

T

• Hence, same solution as for the logistic regression system
aka “Fishers linear discriminant”
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