
COURSE 02457

Signal Processing in Non-linear Systems:

Lecture 5

• Generalized backprop

• Example: NetTalk

• Local quadratic approximation to the cost function

• Weight decay and pruning

• Test error estimation and penalties

• Example: Sunspot predictions

• Gradient descent and line searches

• Conjugate gradients

• Newton’s method

• The Hessian matrix and approximations
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The general Backprop rule

• Consider a hidden unit zj = g(aj),
where aj =

∑
i wj,izi

• then the derivative can be expressed

∂E

∂wji
=

∑

j′

∂E

∂aj′

∂aj′

∂wji

=
∂E

∂aj

∂aj

∂wji

• Let δj = ∂E
∂aj

, note also
∂aj

∂wji
= zi, this leads to

∂E

∂wji
=

∑
n

δn
j zi(x

n)

• Computing the δ′s

δn
j ≡ ∂En

∂aj
=

∑

k

∂En

∂ak

∂ak

∂aj

δn
j = g′(aj)

∑

k

wk,jδ
n
k
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Local quadratic approximation

• Second order Taylor expansion of the costfunction

E(w) ≈ E(w0) +
∑

j

∂E

∂wj
(wj − w0,j)

+
1

2

∑

j,k

∂2E

∂wj∂wk
(wj − w0,j) (wk − w0,k)

E(w) ≈ E(w0) +
∂E

∂w
(w −w0)

+
1

2
(w −w0)

T ∂2E

∂w∂wT
(w −w0)

• The matrix H = ∂2E
∂w∂wT is called the Hessian

• The local approximation to the gradient (∇E) is given
by

∂E

∂w
(w) ≈ ∂E

∂w
(w0) + H(w0) (w −w0)
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Expansion around a minimum

• At a minimum ∇E = 0

E(w) ≈ E(w∗) +
1

2
(w −w∗)T H(w∗) (w −w∗)

• The Hessian is real and symmetric, hence a has a set of
orthonormal eigenvectors

Huj = λjuj

u>i uj = δij

• At a minimum the Hessian is positive: v>Hv > 0

• in particular for all eigenvectors

u>j Huj = λj > 0

• hence, when the Hessian is positive all eigenvalues are
positive
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The generalization error

• Let a training set be given byD = {(t1,x1), ..., (tN ,xN)}.
• The mean square error of the model y(x;w) is given by

E =
1

2

N∑
n=1

(y(xn;w)− tn)2

• Now consider the limit of large sets, the error per example
is

E = lim
N→∞

1

2N

N∑
n=1

(y(xn;w)− tn)2

=
1

2

∫ ∫
(y(x;w)− t)2p(t,x)dtdx

• This is the average (or expected) error on a test datum
(x, t), which we call the generalization error.
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Crossvalidation

• Generalization errors can not be measured, but can be
estimated using a finite test set

• We would like to use as many examples as possible for
training.

• Crossvalidation: Split the data set in V subsets Dv

D = UV
v=1Dv (1)

• For v = 1, ..., V train on D/Dv and estimate the test
error by

Etest =
1

V

V∑
v=1

Ev

Ev =
1

2

∑

n∈Dv

(y(xn;w)− tn)2

• Extreme (and likely optimal): V = N , aka leave-one-out
crossvalidation
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Model capacity and test errors

• The Generalization error depends on the interplay be-
tween model flexibility and training set size

• The learning curve is the relation between generalization
and training set size: Etest(N) vs. N .

• The generalization error is determined by the complexity
of the model and the amount of data N .

• The model complexity is controlled by regularization and
by pruning
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Regularization by weight decay

• Weight decay is a means of soft capacity control

Ẽ(w) = E(w) +
1

2
νwTw

• Analysis of weight decay: Second order Taylor expansion
of the costfunction

E(w) ≈ E(w0) +
∑

j

∂E

∂wj
(wj − w0,j)

+
1

2

∑

j,k

∂2E

∂wj∂wk
(wj − w0,j) (wk − w0,k)

E(w) ≈ E(w0) +
∂E

∂w
(w −w0)

+
1

2
(w −w0)

T ∂2E

∂w∂wT
(w −w0)

• The matrix H = ∂2E
∂w∂wT is called the Hessian
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Weight decay

• Analysis of weight decay:

E(w) ≈ E(w0) +
∂E

∂w
(w −w0)

+
1

2
(w −w0)

T H (w −w0)

• Hence the minimum solves

∂E

∂w
+ H (w −w0) = 0

w∗ = w0 −H−1∂E

∂w
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Weight decay

• Now if there is a non-zero weight decay

∂Ẽ(w)

∂w
=

∂E

∂w
+ νw

• Hence the new minimum solves

∂E

∂w0
+ H0(w

∗ −w0) + ν(w∗ −w0) = 0

• while the old minimum solves

∂E

∂w0
+ H0(w −w0) = 0

• this means that the new and the old minima are related
as

w∗ −w0 = (H0 + ν1)−1 H0(w −w0)
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Saliency: Optimal Brain Damage

• How much does the training error increase if we delete a
weight

• Second order expansion:

E(w) ≈ E(w∗) +
∂E

∂w
(w −w∗)

+
1

2
(w −w∗)T H (w −w∗)

• Deletion of the j’th weight: w −w∗ = wjej

E(w) ≈ E(w∗) +
∂E

∂w
wjej

+
1

2
wje

T
j Hwjej

E(w) ≈ E(w∗) +
∂E

∂wj
wj

+
1

2
Hj,jw

2
j

11



Saliency: Optimal Brain Damage

• However, in the minimum the first derivative is zero,
hence

∆E(w)obd ≈ 1

2
Hjjw

2
j

defining the OBD saliency

• If the retraining contribution is included (the un-pruned
weights are not optimal after pruning) we get instead the
OBS saliency

∆E(w)obs ≈ 1

2

w2
j

(H−1)jj

12



Estimating Generalization: Penalties

• The training set error is a downward biased estimate

Etest ≈ Etrain + dσ2

• If we have used regularization (by weight decay)

Etest,GPE ≈ Etrain + deffσ
2

deff =

d∑
j=1

λj

λj + ν

• The noise variance can be estimated

σ̂2 ≈ 2Etrain

N − deff

• Combining we find

Etest,GPE ≈ N + deff

N − deff
Etrain
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Gradient descent optimization

• Objective: to solve the equation ∇E = 0

w(τ+1) = w(τ) + ∆w(τ)

∆w(τ) = −η∇E|w(τ)

• η is the learning parameter

• η can be too small: convergence very slow

• η can be too large: oscillatory behavior

• Find η by line search along the search direction
d(τ) = −∇E|w(τ):

w(τ+1) = w(τ) + η(τ)d(τ)

E(η) = E(w(τ) + ηd(τ))
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Conjugate gradient method

• Objective: to solve the equation ∇E = 0

w(τ+1) = w(τ) + ηd(τ)

• Let g(τ) ≡ ∇E(w(τ)), the optimal η solves

∂

∂η
E(w(τ) + ηd(τ)) = 0

∇E(w(τ) + ηd(τ))>d(τ) = 0

g(τ+1)>d(τ) = 0

• Gradient at optimal point is orthogonal to the search
direction!

g(w(τ+1))>d(τ) = 0

• Choose the search direction so that this property also
holds between new and old search direction:

g(w(τ+1) + ηd(τ+1))>d(τ) = 0
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Conjugate gradient method cont’d

• Gradient at optimal point is orthogonal to the search
direction! If we search such orthogonal directions we
keep minimal interference.

g(w(τ+1))>d(τ) = 0

• Choose the search direction so that this property also
holds between new and old search direction:

g(w(τ+1) + ηd(τ+1))>d(τ) = 0

• expand to second order:

g(w(τ+1) + ηd(τ+1)) ≈ g(w(τ+1)) + ηHd(τ+1)

(
g(w(τ+1)) + ηHd(τ+1)

)>
d(τ) = 0

d(τ+1)>Hd(τ) = 0

• This defines the conjugate directions.
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Conjugate gradient method cont’d

• A complete set of conjugate directions can be found for
a quadratic problem:

d(τ+1) = −∇E(τ+1) + β(τ)d(τ)

• with the three alternative definitions (g ≡ ∇E)
(Hestenes-Stiefel, Polak-Ribiere, Fletcher-Reeves):

β(τ) =
g(τ+1)>(g(τ+1) − g(τ))

d(τ)>(g(τ+1) − g(τ))

β(τ) =
g(τ+1)>(g(τ+1) − g(τ))

g(τ)>g(τ)

β(τ) =
g(τ+1)>g(τ)

g(τ)>g(τ)

• Furthermore, if we perform a perfect line search at ev-
ery step the algorithm will converge in W steps for the
quadratic problem. For the general costfunction noth-
ing definitive is known, but it should work close to the
minimum....
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Newtons method in 1D

• Let the costfunction be approximated,

E(w) = E(w∗) +
1

2
H(w − w∗)2

• The derivative is given by

∂E

∂w
(w) =

∂E

∂w
(w∗) + H(w − w∗)

∂E

∂w
(w) = H(w − w∗)

• This means that the distance from w to w∗ is

w∗ = w −H−1∂E

∂w
(w)

• Hence the optimal step is ∆w = −H−1∂E
∂w(w)

18



Newtons method in multiple dimensions

• At a minimum ∇E = 0

E(w) ≈ E(w∗) +
1

2
(w −w∗)T H (w −w∗)

∇E(w) ≈ H (w −w∗)

• We find the optimal multivariate step is given by

w∗ = w −H−1∇E(w)

• this is the Newton direction, for a quadratic problem this
solves the optimization problem in one iteration!
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Hessian for a least squares problem

• The least squares costfunction

E(w) =
1

2

N∑
n=1

(yn − dn)2

• The first derivative is

∂E

∂w
=

N∑
n=1

(yn − dn)
∂yn

∂w

• The second derivative is

∂2E

∂w∂w> =

N∑
n=1

∂yn

∂w

∂yn

∂w

>
+

N∑
n=1

(yn − dn)
∂2yn

∂w∂w>

• The Gauss-Newton or outer product approximation is

∂2E

∂w∂w> ≈
N∑

n=1

∂yn

∂w

∂yn

∂w

>

• The pseudo-Gauss-Newton approximation is to ignore
the off-diagonal terms
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